Landsc Ecol (2026) 41:14
https://doi.org/10.1007/s10980-025-02266-y

RESEARCH ARTICLE

q

Check for
updates

Post-fire structural forest recovery associated with climate

extremes in dry sub-boreal forests

Sarah Smith-Tripp® - Nicholas Coops *
Christopher Mulverhill - Joanne White -
Sarah Gergel

Received: 23 May 2025 / Accepted: 18 November 2025
© The Author(s) 2025

Abstract

Context Recent large and high-severity wildfires
have burned vast areas of coniferous forests through-
out Western North America. These burned landscapes
are recovering amid increasingly frequent climate
extremes, such as drought. We need to understand
how post-fire climate extremes and other ecological
drivers (such as fire impacts) influence patterns and
trends of coniferous recovery.

Objectives We worked at a landscape scale
(>400,000 hectares) to investigate the association
between distinct post-fire forest recovery and eco-
logical drivers in dry sub-boreal forests. We created
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structural recovery groups distinct in patterns and
trends of coniferous cover and density and then mod-
eled their association with ecological drivers.
Methods We used Landsat time-series data to iden-
tify unique spectral recovery, which we grouped
based on post-fire regrowth and stocking estimates.
Remotely Piloted Aircraft light detection and ranging
(lidar) provided structural estimates 5-21 years post-
fire. We modeled the association between structural
recovery groups and ecological drivers with random
forests. For each category of drivers (site conditions,
climate, climate anomalies, pre-fire composition, and
fire impacts), we used individual models to identify
important drivers. We then incorporated the most
important drivers in a global model to highlight the
drivers that were important across categories.

Results Initial spectral trends indicated longer-term
differences in structural forest recovery. Climate
anomalies (such as post-fire extremes in temperature
and precipitation) and pre-fire basal area best pre-
dicted observed structural groupings—abnormally
cold and dry summers after the fire were associated
with slow conifer establishment. Comparatively, areas
with a higher pre-fire basal area maintained a mixed
canopy of deciduous and coniferous stems.
Conclusions At a landscape scale, post-fire climate
conditions best predicted structural forest recovery,
suggesting management plans should be adaptable to
the conditions experienced post fire.
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Introduction

Global increases in twenty-first century fire severity
and intensity (Pausas and Keeley 2021) are accentu-
ated in forests of Western North America (NA, Abat-
zoglou et al. 2021; Parisien et al. 2023). In the prov-
ince of British Columbia (BC), the last decade has
seen multiple years of record-breaking wildfire sea-
sons, linked both to historic fire suppression (Baron
et al. 2022) and increasingly common hot and dry
summers (Hanes et al. 2019; Parisien et al. 2023).
Forests are not only more likely to burn because of
climate change (Hanes et al. 2019), but also recover
amidst a warmer and drier climate (Davis et al. 2019).

Historically, Western NA forests were conifer-
dominant (Hessburg et al. 2005), but altered fire
dynamics alongside a changing climate could pro-
mote failed conifer regeneration (Prichard et al.
2021). Distinct post-fire conifer growth, henceforth
structural recovery, describes recovering forests that
vary in conifer composition, structure, and growth
rates. Post-fire seed availability, from the soil or
remaining canopy, is a prerequisite for conifer estab-
lishment (Turner et al. 1999; Stewart et al. 2021).
Ecological drivers, including site conditions or lega-
cies of the fire event control seed germination and
germinant growth. Variability in the structural recov-
ery of conifers is then linked with spatial and tem-
poral variation in ecological drivers. These drivers
can be split into categories that include: fire impacts
(Taylor et al. 2021), site-level topography (Peeler
and Smithwick 2021), pre-fire vegetation conditions
(White et al. 2023), climatic regime (Chu and Guo
2014), and post-fire climate conditions (Davis et al.
2023).

Fire impacts, such as remaining post-fire canopy,
can alter seed availability, germination, and post-fire
microclimate (Turner et al. 1999; Peeler and Smith-
wick 2021; Smith-Tripp et al. 2022). Remaining post-
fire forest canopy can also protect conifer germinants
from climate extremes (Davis et al. 2023) and fire can
catalyze seedling germination in serotinous lodgepole
pine (Pinus contorta var. latifolia) populations (Lotan
1976). Yet the importance of fire impacts is variable.
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For example, serotiny in lodgepole pine is more com-
mon at high elevations and in the north (Lotan 1976).
Comparably, environmental and site-level conditions,
such as elevation or slope, alter conifer recovery inde-
pendent of species (Stevens-Rumann and Morgan
2019). Across the Greater Yellowstone Ecosystem,
Kiel and Turner (2022) found that higher elevations
and steeper slopes caused sparse conifer growth
(< 1,000 stems/ha) more than 30 years post-fire. Yet,
such relationships are not ubiquitous: in the Blue
Mountains of Oregon, Downing et al. (2019) found a
positive relationship with elevation and conifer seed-
ling density.

Region and site history drive pre-fire vegetation
conditions, which in turn impact conifer recovery.
A high density and/or basal area of conifers pre-fire
can increase the rate and density of conifer recovery
(Harvey et al. 2016; White et al. 2023). Additionally,
a higher pre-fire deciduous composition can result in
rapid deciduous growth post-fire (Haire and McGari-
gal 2008). Post-fire deciduous growth can facilitate or
compete with conifer growth—Downing et al. (2019)
found deciduous growth negatively impacted recov-
ery of most conifers but protected young ponderosa
pines (Pinus ponderosa) from climate extremes.
Finally, disturbance histories, including consecu-
tive burns or insect attacks, can dramatically alter
recovery patterns. Short intervals between burns can
limit available serotinous seeds because the trees that
establish after the first burn do not reach sexual matu-
rity before the second burn (Braziunas et al. 2023).
Other disturbances, such as Western Canada’s infa-
mous mountain pine beetle (MPB) infestation, can
cause canopy death, introducing additional fuel for
fire (Talucci et al. 2022), as well as decreasing the
available seed stock (Teste et al. 2011).

Pine forests throughout BC were decimated by
MPB, raising important questions on how the legacy
of the MPB impacts both the likelihood of fire and
recovery post-fire. Starting in the early 2000s, the
MPB outbreak impacted over half (50%) of mature
lodgepole pine stands (Dhar et al. 2016b). Many
researchers expected that the aftermath of MPB
would be extensive areas of tree mortality, which
would be ideal fuel for high-intensity and high-sever-
ity fire (Collins et al. 2012). However, observed out-
comes of MPB and fire are more mixed (Harvey et al.
2014). In the early years after initial MPB attack,
fire susceptibility increases, but in later years, the



Landsc Ecol (2026) 41:14

Page 3 of 23 14

likelihood of fire is lower (Harvey et al. 2013). Yet,
as MPB-affected trees die and fall to the ground, they
leave behind large fuel that, when ignited, burn the
soil at high severities (Perrakis et al. 2018; Talucci
et al. 2022). Given the expansive area impacted by
MPB, it is crucial to consider how combined dis-
turbance of MPB and fire could impact ecosystem
recovery (Dhar et al. 2018).

In conifer forests south of BC, recent models of
post-fire recovery heavily emphasize the impor-
tance of extreme post-fire climate, such as drought or
extreme heat on conifer recovery ( Vanderhoof et al.
2021: Stevens-Rumann et al. 2022; ). For example,
Talucci et al. (2019) studied lodgepole pine recruit-
ment following wildfire and bark beetle infestation in
interior BC. They found that post-fire climate mois-
ture deficit (CMD) was negatively correlated with
seedling density, but the sample size-limited study
conclusions. Across the Western US region, Davis
et al. (2023) combined observations from> 10,000
field plot samples to model post-fire recruitment
probability. In their models, a year of extremely
hot and dry conditions negatively impacted conifer
recruitment, but impacts varied across scales, regions,
and species (Davis et al. 2023). The importance of
post-fire climate conditions has been demonstrated in
dry forests of the Western US (Guz et al. 2021; Stew-
art et al. 2021) and in boreal environments (Boucher
et al. 2020; White et al. 2023), but investigations of
post-fire climate, relative to other drivers, are lacking
in the dry sub-boreal region of interior BC.

To understand recovery drivers, landscape-level
approaches are helpful to capture a gradient of eco-
logical drivers. Exemplars such as the meta-analysis
of Davis et al. (2023) help clarify the impact of dif-
ferent drivers on ecosystem recovery. However,
building such landscape-scale field datasets is costly,
labour-intensive, and challenging to update. Litera-
ture syntheses, comparing individual study results
from a diversity of environments, are another way
to understand recovery drivers across scales (Bar-
tels et al. 2016). However, BC’s sub-boreal region,
despite encompassing over 12 million hectares, has
had relatively few post-fire studies and lacks the
extensive field sampling used in other meta-analyses
(e.g., Davis et al. 2023). The lack of post-fire moni-
toring and research in the extensively burned sub-
boreal (Parisien et al. 2023) could preclude us from
capturing possibly novel landscape transitions — such

as conifer forests transitioning to conifer grasslands
(Hamilton and Burton 2023).

Satellite imagery is a strategic way to overcome the
data deficits in BC’s under-sampled sub-boreal for-
ests (Chu and Guo 2014). Long-term and historically
continuous satellite measures, such as the 40-year
Landsat archive, capture temporal trends in surface
reflectance and associated land cover (White 2024).
Spectral indices, calculated from surface reflectance,
describe different elements of forest structure. The
rates of spectral recovery for different indices, like the
normalized burn ratio (NBR), capture structural for-
est development, including patterns of stem density or
time-points of conifer establishment (Kiel and Turner
2022; Smith-Tripp et al. 2024a; White et al. 2023).
Using early spectral recovery trends (e.g. five years),
descriptive of longer (e.g. 20 years) distinct structural
recovery, helps infer how recently burned environ-
ments may structurally recover in the future (Pick-
ett 1989; Pettorelli et al. 2005). In this case, future
recovery rates, both structural and spectral, could be
inferred by observations in older burns with similar
early spectral responses (Ye et al. 2021; Smith-Tripp
et al. 2024b).

In the face of widespread fires, landscape-level
forest structure monitoring can leverage the Landsat
archive as well as the spatially continuous structural
measures from light detection and ranging data (lidar)
to identify how early spectral responses are attributed
to structural development over time (Menick et al.
2024). Even early spectral responses (<35 years) have
been linked to longer-term differences in post-fire
structural growth (Smith-Tripp et al. 2024b). Lidar
captures spatial patterns of recovery at the scale nec-
essary to link structural estimates to satellite-based
temporal trends, and how these patterns and trends
vary based on ecological drivers (Weiss et al. 2023).

Our study capitalizes on the link between spectral
responses and structural recovery (Smith-Tripp et al.
2024b) to investigate the relative impact of recov-
ery drivers at a landscape scale. We ask which eco-
system drivers are associated with different patterns
and trends of structural recovery. Our objectives
were three-fold: (1) develop structural groupings that
define forest structural recovery in relation to spectral
recovery responses (2) determine the relative effect
that different categories of drivers (e.g. post-fire cli-
mate or pre-fire conditions) have on structural group-
ings; and (3) across all recovery drivers, understand
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which drivers were the most important across and
within structural groupings. Our approach highlights
recovery drivers with the greatest impact on post-
fire structural patterns and trends in the western sub-
boreal forests of British Columbia.

Methods
Study region

Our study area encompassed over 300 fires that
burned nearly 500,000 ha of forest between 1985 and

2017 in central British Columbia, Canada (Fig. 1,
CWFIS). We concentrated on the sub-boreal spruce
(SBS) and sub-boreal pine spruce (SBPS) biogeo-
climatic ecozones. The SBS and SBPS ecoregions
cover 12 million hectares of rolling topography and
high-elevation plateaus (600 — 1300 m elevation).
The climate is continental with dry and cool grow-
ing seasons; temperatures and precipitation average
12.3 °C and 166 mm, respectively (Wang et al. 2016).
Soils are typically podzols or luvisols of glacial and
glaciofluvial origin (DeLong et al. 2003). The historic
fire regime in these ecozones was large stand-replac-
ing fires that occurred every 100 years, but recent
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Fig. 1 Burned areas included in research. (Top left) NTEMS
identified fires (yellow) and areas above high-severity thresh-
old (red) based on change magnitude. (Top right) Years of fire
event from 1985-2017. Inset map at top right notes location
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or study area within British Columbia. (Bottom) column chart
displaying hectares (ha) of high-severity fire for all study years.
The 2017 record wildfire season is highlighted. Total area of
fires =430,000 ha
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fire events were larger and more severe than historic
norms (Pelletier et al. 2024). After these stand-replac-
ing burns, similar to other sub-alpine and sub-boreal
North American forests, post-fire regrowth consists
of rapid lodgepole pine (Pinus contorta var. latifolia)
canopy establishment alongside resprouts of decidu-
ous species such as trembling aspen (Populus tremu-
loides) and paper birch (Betula papyrifera; Day 1972;
Pausas and Keeley 2021). Many areas of the SBS and
SBPS are single-species stands of lodgepole that were
established after the last fire event (Meidinger and
Pojar 1991). Other conifer species typically establish
beneath this lodgepole pine canopy. These species
include: spruce (including Engelman, white, and their
hybrid, Picea engelmannii, glauca, and engelmannii x
glauca), Douglas-fir (Pseudotsuga menziezii), subal-
pine fir (Abies lasiocarpa; DeLong et al. 2003).

Methods overview

Our research fused spectral data from Landsat satel-
lites with a chronosequence of RPA lidar-derived for-
est structural data (5-21 years post-fire) to describe
forest structural recovery following high severity fire.
Building on the link between unique spectral recov-
ery responses and structural recovery (Smith-Tripp
et al. 2024a; 2024b) we created post-fire structural
recovery groups using a combination of early spectral
responses from Landsat and a space-for-time dataset
of forest structure from RPA. We investigated how
these observed structural groupings were predicted by
ecological drivers (climate, post-fire climate anoma-
lies, fire-impacts, and pre-fire landscape characteris-
tics). An overview of our methodology is presented
in Fig. 2.

High-severity wildfire areas were identified using
Landsat-based National Terrestrial Ecosystem Moni-
toring System (NTEMS) data (Hermosilla et al.
2016). These data layers use annual NBR measures to
generate Canada-wide maps of disturbance year, type,
and magnitude from 1985-2017. Change magnitudes
are synonymous with the differenced normalized burn
ratio (ANBR) calculated as the difference between
the NBR value the year before the fire and the low-
est NBR value in the subsequent two years post-fire
(Hermosilla et al. 2016). We converted NTEMS
change magnitude estimates into Burned Area Reflec-
tance Classification — Adjustable (BARC-A) values,
which range from 0 to 255. BARC-A values describe

the condition of the surface vegetation that remains
after a fire (Hudak et al. 2007). The province of BC
uses BARC-A values and additional aerial validation
to classify unburned, low, moderate, and high sever-
ity burned areas (BC Ministry of Forests 2023), but
classifications are only available for fires after 2015
(BC Ministry of Forests 2021). As our study covered
19852017, we set a minimum BARC-A threshold of
130 for the transformed NTEMs magnitude estimates,
constraining research to areas of high and moderate
severity (BC Ministry of Forests 2021).

To eliminate differences in post-fire management,
we also removed areas reported as replanted (British
Columbia Data Catalogue 2022). Noting the expan-
sive area of BC impacted by MPB, we checked for
overlap between selected fire events and areas of his-
toric MPB outbreaks. Regions affected by MPB were
identified from BC aerial overview survey (AOS)
data. As AOS data is known to have a high error rate
(Bourgeois et al. 2018), we required disturbance poly-
gons to have contained MPB infestations in multiple
years. We then assessed the overlap between MPB-
affected forest polygons with areas the NTEMS algo-
rithm identified as experiencing a non-stand-replac-
ing disturbance followed by a fire event (Hermosilla
et al. 2019). The total area impacted first by MPB and
then a high-severity fire was low (less than 4% of the
study area), and deemed inconsequential to study out-
comes. Thus, the final study area covered 430,000 ha
and is highlighted in Fig. 1.

Structural recovery groupings

To create structural recovery groups, we first clus-
tered post-fire spectral metrics to identify unique
spectral responses. Spectral metrics described
the rate and total magnitude of spectral recovery
in the first five years post-fire. The three spectral
metrics were calculated for seven spectral indices
and included (1) regrowth magnitude, (2) median
yearly rate of change (slope), and (3) the spectral
reflectance measure 5 years after the fire (indica-
tive of the post-fire landcover; Hicke et al. 2003).
Thus, 21 post-fire spectral metrics (three metrics
for seven spectral indices) were derived from post-
fire measures of seven indices. Indices include the
normalized difference vegetation index (NDVI), the
normalized difference moisture index (NDMI), the
normalized burn ratio (NBR), and the tasseled cap
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Fig. 2 Overall research framework including development of
structural groupings. Boxes beneath ‘drivers of recovery’ are
the categories of drivers used in individual random forests that

indices (brightness — TCB, wetness — TCW, green-
ness — TCG, and angle — TCA). For more details on
how these metrics are calculated see Smith-Tripp
et al. (2024b). Final clustering also included burn
severity (ANBR). A total of 22 spectral metrics were
standardized and used as inputs into an augmented
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were then consolidated in a global random forest. The over-
all impact of drivers of recovery on structural recovery (final
research objective) is accented in dark gray

Kmeans + +algorithm, which iteratively groups
pixels by similarity in n-dimensional (n=22) space
(Kapoor and Singhal 2017). Final clusters mini-
mized the distortion criterion, which measures the
distance between points and the associated cen-
troid (Kodinariya and Makwana 2013). Clusters
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representing less than 1% of observations were
excluded from further processing.

We merged spectral clusters into distinct struc-
tural groupings using a space-for-time sample of for-
est structural measures captured with RPA lidar. The
forest structure sampling covered 1300 ha (an addi-
tional 500 ha compared to Smith-Tripp et al. (2024b))
of forests 5-21 years post-fire. We combined RPA
lidar data and field measurements to model basal
area (BA), bare ground (%), stem density (stems/900
m2), and the ratio of coniferous to deciduous cover.
To improve temporal continuity, we grouped samples
into post-fire “epochs” of one-to-two-year periods:
5-7, 8-9, 11-12, 15-16, and 21-years post-fire. For
more details on RPA lidar data and associated lidar
modelling, Supplemental Sect. 1 as well as Smith-
Tripp et al (2024a, b). We used RPA lidar structural
estimates to merge unique spectral trends into distinct
recovery groups. A distinct group could have differ-
ent stem counts, but potentially similar BA across
years. We selected a PERMANOVA because it can
capture dissimilarity across multiple factors and is
robust to non-normal data (Anderson 2017). An ini-
tial PERMANOVA used in F-statistic to test if trends
differed based on a dissimilarity matrix derived from
estimates of stem densities, bare ground, basal area,
and the proportion of conifer to deciduous by sample
year (McArdle and Anderson 2001). Then, spectral
clusters were merged into structural groups based
on post-hoc tests of the PERMANOVA similarity
estimates (p-value>0.05; Todorov 2007). Based on
these results we assigned structural grouping names
that reflected their distinct patterns or trends, such
as stem-density differences or the rate of coniferous
establishment. For a more in-depth overview of the
grouping process, see Smith-Tripp et al. (2024b).

Drivers of forest recovery

To investigate how recovery drivers impact structural
recovery, we considered both individual drivers, such
as elevation, and drivers by category, such as environ-
ment. Driver categories include: (a) environment (b)
pre-fire vegetation condition and fire-impacts (c) cli-
mate and (d) post-fire climate anomalies. We selected
drivers based on findings in similar ecosystem types.
See Table 1 for data sources and literature support for
driver selection.

Environmental conditions

Elevation data used the bare-ground Canadian Digi-
tal Elevation Model (CDEM) hosted by the BC data
catalogue (GeoBC, 2014; Natural Resources Canada,
2013). We used the elevation model to calculate addi-
tional indices including topographic position index
(TPI) in 3 x 3 window, flow direction and transformed
aspect (TRASP). Flow direction is a unitless index
that describes the drainage of an area, indicative of
site-level moisture dynamics (Metcalfe et al. 2015).
TRASP transforms aspect to range from 0-1, where
0 is on northern aspects and 1 is on hotter southern
aspects (Roberts and Cooper 1989). Soil types were
obtained from a provincial digital soil map, classi-
fied using a random forest algorithm with validation
plots and remotely-sensed climate and vegetation data
(Heung et al. 2022).

Pre-fire conditions and fire impacts

Pre-fire site conditions used provincial data-layers
and satellite-based models. Site-type was from the
Biogeoclimatic Ecosystem Classification system
(BEC) subzone. The BEC subzone describes precipi-
tation and temperature (e.g., moist-cold) of a given
site relative to conditions throughout BC (Meidinger
and Pojar 1991). Land cover type, species com-
position, and BA were derived from NTEMS data
(Matasci et al. 2018; Hermosilla et al. 2022b, a). For
land cover and species composition, we used the most
common class five years prior to the fire. For pre-fire
BA, we calculated mean BA (m*ha) five years prior
to the fire.

Fire impacts were calculated using the NTEMS
disturbance attribution data (Hermosilla et al. 2016).
Generally, accurate assessment of fire impacts on
soil and canopy from satellite data is limited (Chu
and Guo 2014). Additionally, while fire severity is
an important driver to consider, it was excluded from
models because our study focused only on areas of
high severity fire and included severity within initial
cluster development. We were constrained to impacts
such as the distance to patch-edge (m) and patch size
(ha). We calculate these metrics by grouping burned
pixels for each study-year (i.e., fire events).

@ Springer
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Table 1 Data sources or calculations citations for drivers of forest recovery

Type Explanatory vari- Abbreviation /Unit  Data Source Data Reference Driver Reference
able
Site/Environmental  Elevation Elev (m) Global digital eleva- Natural Resources ~ Bright et al. (2019)
Conditions tion model Canada, (2013)
Topographic posi-  TPI Elevation data Littlefield (2019)
tion index
Soil type Soil Terrestrial ecosys-  Heung et al. (2022) Baltzer et al. (2021)

Pre-Fire Conditions

Fire Impacts

Climate (& Post-fire
Climate Anoma-
lies)

Flow direction
Aspect index
Ecosystem subzone

Pre-fire BA

Pre-fire landcover
class

Pre-fire Species type

Patch size

Distance to live-
edge

Mean annual tem-
perature

Mean annual pre-
cipitation
Precipitation as
snow (mm august
—July)
Hargreaves climatic
moisture deficit
Summer average
temperature

Maximum summer
temperature

Minimum summer
temperature

Minimum winter
temperature
Average spring
precipitation
Average summer
precipitation
Average autumn
precipitation

Flow direction
TRASP
Subzone

Pre-fire BA (m*ha)
Pre-fire landcover

Pre-fire species

Patch (ha)
Edge (m)

MAT (°C)
warmest year

MAP (mm)
driest year

PAS (mm)

min snow

CMD (mm)
max CMD

Summer avg. t
average coldest
summer T

Summer max t

max warmest Sum-
mer T

Summer min T

min coldest sum-
mer T

Winter min t

min coldest winter T

Spring precip

min spring precip
Summer precip
min summer precip
Fall precip

min fall precip

tem mapping
Elevation data

Elevation data

Ecosystem Clas-
sification

NTEMS
NTEMS

NTEMS

Derived from
NTEMS burned
area (Hermosilla
et al. 2016)

ClimateNA

Kopecky et al.
(2021)

Roberts and Cooper
(1989)

Meidinger & Pojar
(1991)
Matasci et al. 2018

Hermosilla et al.
(2022a, b)

Hermosilla et al.
(2022)

Wang et al. (2016)

Harvey et al. (2016)
Littlefield et al.

(2016)

BC Forest Practices
Board (2020)

White et al. (2023)
Meng et al. (2015)

Kemp et al. (2016)
Littlefield et al. 2016

Bright et al. (2019)

Bright et al. (2019)

Talucci et al. (2019)

Davis et al. (2023)

Guz et al. (2021)

Guz et al. (2021)

Hansen and Turner
(2019)

Meng et al. (2015)
Hankin et al. (2019)
Guz et al. (2021)

Harvey et al. (2016)

Abbreviation and units for each variable. References note data source. For each driver, a reference for both the data source, and prior
reference support (last table column). Note: climate anomalies used in models are italicized

@ Springer



Landsc Ecol (2026) 41:14

Page 9 of 23 14

Climate and post-fire climate anomalies

Climate data were generated from ClimateNA soft-
ware, which uses elevation models to downscale data
from> 10,000 meteorological stations across North
America via bilinear interpolation and dynamic local
downscaling (Daly et al. 2008; Wang et al. 2016).
First, we used our 30 m elevation data and ClimateNA
to calculate and downscale 1981-2010 climate nor-
mals at seasonal and annual timesteps. Prior research
studies informed climate variable selection (Meng
et al. 2015; Petrie et al. 2016; Hankin et al. 2019;
Bright et al. 2019; Littlefield 2019; BC Forest Prac-
tices Board 2020; Hoecker et al. 2020). Climate nor-
mals described average annual and growing season
aridity and temperatures. We used climate normals to
calculate standardized z-scores of climate extremes.
Throughout the text, these extremes are referred to
as “climate anomalies.” Climate anomalies used the
standardized maximum and/or minimum measure of
climate variables for the first five years post-fire to the
climate normal and the standard deviation for years
1981-2010. In Table 1, selected climate anomalies
are included in italics below the climate normal used
to calculate them.

Modeling recovery drivers impact on structural
recovery groups.

To investigate the association between recovery driv-
ers and recovery groupings, we used random forests
(RF) modeling where the response variable was the
structural recovery group. We selected a random for-
est approach for three key reasons: (1) RFs are robust
to overfitting with a large number of ecological pre-
dictors, (2) they do not require linearity or independ-
ence among predictors (Fox et al. 2017); and (3)
they are computationally efficient for large datasets
(Wright and Ziegler 2017). For model building, we
selected a stratified random sample of 1% of burned
pixels (1985-2017; n=48,766) stratified by the four
structural groups. To limit spatial autocorrelation,
sampled pixels were a minimum distance 90 m apart,
which we split into training (70%) and testing (30%)
sets.

Our RF modeling used a tiered approach.
First, we built four individual RFs for each driver

category (e.g., environmental conditions or cli-
mate). We used the accuracy estimates of the indi-
vidual RFs to test which category of drivers best
predicted structural groups. We also used the vari-
able importance of individual RFs to extract the
top five drivers for each category. The global RF
combined the dominant drivers of each category. In
the cases where the categories had fewer than five
variables, we included drivers whose permutational
variable importance estimate was greater than 0.05.
The tiered RF approach eliminated redundant vari-
ables. A total of 34 recovery drivers were used in
four individual RF models (Table 1), which consoli-
dated to 19 recovery drivers for the global RF. For
individual RFs, the number of variables tested in
each split (mtry) was 2, and the number of decision
trees (ntree) was 500.

The global RF model tested five variables at each
split (mtry), the number of decision trees (ntree) was
500, and the minimum terminal node size (node-
size) was five. As we modeled classes, the split rule
used extra trees, and the performance measure used
the misclassification rate. We tested the accuracy
of the global RF model based on out-of-bag (OOB)
error with a training dataset and using validation data
external to the RF model (sample size =14,440). To
understand the importance of recovery drivers within
and across structural groups, we calculated condi-
tional variable importance across the global model
and for each structural grouping. We ranked impor-
tant recovery drivers using the Boruta algorithm,
which measures the mean importance of all drivers
included in the model compared to random noise in
the data when fit multiple times (Kursa and Rudnicki
2010). To understand the likelihood of observing
structural responses for different values of recovery
drivers, we calculated the partial dependence for the
six most important drivers by structural group.

All models were built in an R environment (R Core
Team 2023). RF modeling used the ranger pack-
age (Wright and Ziegler 2017). We used the Boruta
algorithm from the Boruta package to calculate con-
ditional variable importance (Kursa and Rudnicki
2010). Partial dependence was calculated using the
pdp package (Greenwell 2017).

@ Springer
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«Fig. 3 Structural estimates for each post-disturbance epoch by
group. Black lines are the median structural value with boxes
spanning the interquartile range and 95% confidence values.
Black points are the mean structural value. Sample size for cal-
culations is noted in Table S3. Note that mixed growth was not
identified in areas sampled 21 years post-fire

Results
Identifying structural groups

Structural groupings described variability in for-
est structural development through time and across
structural variables (Fig. 3). Data-clustering resulted
in 8 unique spectral clusters that captured 47% of
variance in spectral metrics. For these 8 unique clus-
ters, results of PERMANOVA and post-hoc analysis
identified four unique structural groupings within
and across years (F (1, 14,385)=40.62, p<0.01; Fig
S1, Table S2). See Fig. S2 for illustrative orthopho-
tos comparing groups 15 years post-fire. Structural
groups were labelled as follows:

Mixed Growth: strong deciduous tree and shrub
dominance early on (average in year 5-7 post-
fire=48% deciduous) with a low proportion of bare
ground in later years (average=7.9%).

Regrowth Delay: a high proportion of bare ground
for the first decade (average in years 8-9=75%)
replaced by dense coniferous stems (average = 10,500
stems/ha in years 15-16).

Regenerative Conifer: Strong early conifer-
ous regrowth (average coniferous cover in years
8-9=84%) with high-stem densities in later years
(highest stem density estimates in year 21 aver-
age= 15,035 stems/ha).

Coniferous Dominant Mixed Growth: Generally
lower stem densities (average in year 15-16=5,500
stems/ha) that corresponds with lower BA (average in
year 21 =0.07 m*/ha).

The most frequently observed grouping was regen-
erative conifer (38%) followed by regrowth delay
(27%), while coniferous dominant mixed growth
and mixed growth were less commonly observed
(19.7-15.3%). Across the study area, mixed growth
and coniferous dominant mixed growth were more
common in the north whereas regrowth delay was
more common in the south of the study region
(Fig. 3). Mixed growth was common in smaller
patches — dominant in the northern part of the study

region (Fig. 3, Fig. 4,). Regrowth delay and conifer-
ous dominant mixed growth are common in large fires
— concentrated in the southwest of the study area.

Spectral differences among merged structural
groups

Recovery groups varied in their scaled spectral
recovery metrics used as inputs in k-means cluster-
ing. Generally, regrowth delay and conifer dominant
mixed growth had lower slopes of spectral recov-
ery (Fig S3). Regrowth delay had the lowest slope
of recovery for both TCW and NBR (scaled aver-
ages —0.72 and —0.95). Conversely, mixed growth
and regenerative conifer had higher slopes of recov-
ery (scaled averages of 0.17 and 0.69 for NBR).
Regenerative conifer had the highest slope of recov-
ery for the majority of indices, while mixed growth
recovery had the highest slope of recovery for NBR
(average=0.73). Regenerative conifer also had the
highest magnitude of regrowth for NBR, NDVI,
TCA, TCB, TCG, while mixed growth had the high-
est regrowth for TCG and NDMI. Comparatively,
areas that were identified as conifer dominant mixed
growth had the lowest regrowth magnitudes across
all indices (Fig S3). However, average spectral meas-
ures were similar between conifer mixed growth and
regenerative conifer five years after the fire. Finally,
burn severity varied across structural groups (H (3,
n=39,553)=9,608.7 (p<0.001)). Conifer domi-
nant mixed growth and regenerative conifer had the
greatest burn severities (scaled averages —0.65 and
—0.55 respectively). While regrowth delay and mixed
growth had lower estimates of burn severity (scaled
averages —0.43 and —0.48).

Structural groupings are predicted by recovery
drivers

Following our tiered modeling approach, we first
used four individual random forests to assess the pre-
dictive power of recovery drivers by category. Indi-
vidual random forests were built for (1) environment
and site conditions, (2) pre-fire conditions and fire
impacts, (3) climate conditions, and (4) post-fire cli-
mate anomalies. For individual RFs, RFs of post-fire
climate anomalies and typical climate conditions had
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Fig. 4 Spatial distribution of structural groupings across the
sub-boreal spruce and sub-boreal pine spruce Ecozones — inlay
map shows ecozone location within BC. Hexagons are the
most common structural group within each 10,000-ha area.

the highest overall accuracy (out-of-bag (OOB) accu-
racy 83 and 84% respectively, Table S3). Site-level/
environmental conditions had an overall accuracy
of 54. Finally, pre-fire conditions and fire impacts
had an accuracy of 66%. Building on the individual
models, the global RF, which used dominant drivers
identified for individual models, included 19 predic-
tor variables. The global RF OOB accuracy was 84%,
and when tested using an independent validation
dataset the overall accuracy was 82%—supporting the
model was not overfit. Regenerative conifer was pre-
dicted most accurately (mean of precision and recall

@ Springer

Subsets shown left of the map are the groups at a 30 m resolu-
tion for two large fires (A—Chelaslie River Fire 2014, B- Pla-
teau Complex Fire 2017). Locations of subset are noted left of
map

(F-score) of 89%, Fig. S4), while conifer dominant
mixed growth was predicted with the lowest accu-
racy (F-score=85%). Both conifer dominant mixed
growth and regenerative conifer were frequently mis-
classified as mixed growth (12% of samples).

In the global model, anomalously cold and dry
summers were the most important predictors of
observed groupings (minimum summer precipi-
tation and average coldest summer temperature,
Fig. 5). Annual climate anomalies, such as the
warmest year and minimum summer temperature
were also important. In the Boruta algorithm, when
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Fig. 5 Boxplots for variable importance for random forest built for the global model with all driver Categories. Distribution is the
Boruta variable importance for 500 random forest trees. Importance range 0—100, where 0 is no impact

these metrics were removed, the explanatory power
of the model decreased by 54 and 58% respectively.
Typical climate conditions, including minimum
winter temperature, or average fall and summer
precipitation, generally followed climate anoma-
lies in overall importance. Fire impacts (patch size

and distance-to-edge) and site-level/environmen-
tal conditions (soil type, subzone, TRASP, and
elevation) had similar relative importance values
(41-45%). Topographic position had a notably
lower importance than other variables (relative
importance = 12%).
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Fig. 6 Partial dependence plots for the top 6 most important
drivers from global random forest (19 selected drivers). The
X-axis represents predictor variable range, and the y-axis is
likelihood for structural with all other variables in the random

The relative effects of dominant ecological drivers
on structural groupings

We used the global model to compare the marginal
effects of the six most important drivers. Partial
dependence plots demonstrated structural group
likelihoods were associated with different ecologi-
cal driver values (Fig. 6). In some cases, only one
structural group had different responses to an ecologi-
cal driver, such as minimum summer precipitation.
Regenerative conifer was the only structural group
not negatively affected by minimum summer precipi-
tation (Fig. 6). Comparatively, coniferous dominant
mixed growth was positively associated with warmest
year. However, mixed growth was negatively related
to warm post-fire years but positively associated with
a lack of dry summers. Additionally, minimum snow
deposition had a slightly positive effect on regenera-
tive conifer, and a slightly negative effect on conifer-
ous dominant mixed growth.

Pre-fire BA had variable effects on structural
groups. Generally, groups with a higher proportion
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forest held constant. Variables are listed in decreasing impor-
tance for random forest. Labels above plots note the units for
each driver. “Z” is the z-score standardized value based on cli-
mate data 1980-2010

of deciduous stems after fire were positively associ-
ated with greater pre-fire BA (both mixed growth and
coniferous dominant mixed growth had higher pre-
fire BA).

Differences in pre-fire conditions and fire impacts
across structural groups

The most important drivers for fire impacts and pre-
fire conditions categories in the global RF model were
pre-fire BA and burned patch size. In the global RF,
pre-fire BA was the third most important predictor
(Fig. 5). Pre-fire BA estimates were highest in mixed
growth (average BA =24.60 m?/ha), while lowest pre-
fire BA estimates were in regrowth delay areas (12.5
m?/ha). The lower significance of pre-fire BA in the
overall RF (Fig. 5) is likely because pre-fire BA was
similar between conifer dominant mixed growth and
regenerative conifer (Fig. 7 pre-fire BA=16.2 vs 16.0
m?/ha respectively).



Landsc Ecol (2026) 41:14 Page 15 of 23 14
Patch Size (ha) Pre-Fire BA (m?ha)
20
15+ 404
10 4
5_ .
b L__TOoC_nm QR
Regrowth Regenerative  Mixed Conifer Regrowth Regenerative  Mixed Conifer
Delay Conifer Growth Dominant Delay Conifer Growth Dominant
Mixed Growth Mixed Growth
Structural Group E Regrowth - Regenerative . Mixed E ggnmifﬁ;nt
Delay Conifer Growth Mixed Growih

Fig. 7 Boxplots of structural groupings for patch size cal-
culated from NTEMS dNBR data (left) and pre-fire mean (n
= 5 years) BA in m2 / ha (right). Boxes are colored by struc-

Patch size was the most important variable for
fire impacts (compared to distance-to-edge). Similar
to pre-fire BA, conifer dominant mixed growth and
regenerative conifer had similar patch sizes (Fig. 7,
patch size=5.36 vs 6.40 ha). Comparatively, mixed
growth had the smallest patch sizes (average patch
size=4.30 ha) and the highest pre-fire BA estimates
(average BA =24.60 m*ha). Finally, regrowth delay
had the highest average patch size (average =6.2 ha).

Discussion

Post-fire trends and patterns of structural recovery
were strongly impacted by a single year of cold or dry
summers within the first five years after a fire (Fig. 6).
We found eight unique spectral responses that char-
acterized four groups of structural forest recovery,
each with different ratios of coniferous and deciduous

tural group. Black lines are median structural value with boxes
spanning the interquartile range and 95 % confidence values.
Black points are the mean value for each structural group

cover, stem densities, and rates of conifer establish-
ment. Of the four categories of recovery drivers
(environment, climate variables, post-fire climate
anomalies, fire impacts and pre-fire conditions), post-
fire climate anomalies best predicted structural recov-
ery (Fig. 5). Specifically, anomalous cold and dry
periods impacted regeneration timing and the ratio of
deciduous stems; areas of delayed coniferous regen-
eration experienced particularly cold summers. In
contrast, areas with a higher proportion of deciduous
cover (coniferous dominant mixed recovery), were
less likely to have cold summers and generally had
summers with greater precipitation. Our approach,
fusing spectral with lidar data to characterize struc-
tural forest recovery, addresses the important need for
understanding recovery across the vast burned envi-
ronments of the sub-boreal.
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Early spectral responses described longer-term
differences in structural recovery

When the eight spectral clusters were merged into four
unique groupings of structural recovery, the structural
groups remained unique in spectral responses (Fig
S3). Thus, these early spectral dynamics character-
ized longer-term differences in structural recovery,
specifically differences in the rate of coniferous estab-
lishment, proportion of deciduous trees, and stem den-
sities. Our research builds on the connection between
unique post-fire spectral responses and differences in
structural recovery (Guz et al. 2022; Kiel and Turner
2022; Smith-Tripp et al. 2024b), but as structural
groupings did not directly mirror those identified by
Smith-Tripp et al. (2024b) our findings raise important
considerations when implementing a space-for-time
study using spectral trends.

There are similarities between our four structural
recovery groups and recovery patterns and trends
observed in other conifer forests (Littlefield 2019;
Kiel and Turner 2022; Menick et al. 2024). Addi-
tional forest structural data from lidar acquisitions
supplemental to the dataset of Smith-Tripp et al.
(2024b) clarified trends and patterns of recovery.
For example, Smith-Tripp (2024b) identified some
areas with remaining residual canopy and delayed
regrowth — but the sample size for these areas was
low (25 pixels). Additional sampling (3,778 pixels)
confirmed these areas, classed as regrowth delay, had
high ground cover and stem densities five years post-
fire, which may be from residual canopy, as well as
delayed regrowth. 8—12 years post-fire regrowth delay
had relatively low stem densities and a high propor-
tion of bare ground 8-12 years post-fire, supporting
slow conifer establishment. The slow conifer estab-
lishment rate of regrowth delay has been observed
elsewhere in Western NA (Littlefield 2019; Menick
et al. 2024; Kiel et al. 2025). All these studies sup-
port that new coniferous stems can take 10-20 years
to establish and/or detect.

Interestingly, the group with the highest conifer
stem density in the early post-fire (+5) years, was
mixed growth. However, high stem densities in mixed
growth could also reflect residual canopy— a response
also noted by Smith-Tripp et al. (2024b). The loss of
residual canopy (common in the first decade post-
fire; Bolton et al. 2015; Frazier et al. 2018) would
also explain the drop in stem-density in years 8-9.
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Research in conifer forests often associates high-
severity fire with post-fire dominance of shrub or
aspens (Lee 2004; Paudel and Markwith 2023),
but we found burn severity was not indicative of a
deciduous response. The group with the highest burn
severity (conifer dominant mixed growth) had the
highest proportion of deciduous cover in years 5-7
(Table S2) but maintained a conifer dominant compo-
sition throughout the study period.

Future research in dry coniferous forests should
be cautious to associate “fast” spectral recovery with
deciduous recovery. In our research the group with
the highest deciduous component, mixed growth, also
had the highest spectral recovery for NBR. Yet NDVI
spectral recovery rates were higher for regenerative
conifer, which had the highest proportion of conifers
and greatest stem density. Thus, in dry coniferous for-
ests, a faster spectral recovery rates for indices such
as NBR or NDVI is not indicative of a greater decidu-
ous abundance. This conclusion aligns with findings
of Celebrezze et al. (2024). They found areas of “fast”
and “slow” spectral recovery (both NBR and NDVI)
distinguished shrubs and conifers from grass but
could not distinguish shrubs among conifers. Notably,
we found “slow” spectral recovery rates were consist-
ently associated with regrowth delay, likely a result of
a high proportion of bare ground in the early post-fire
years. In conifer forests, spectral recovery rates are
then best associated with a description of general veg-
etative recovery.

By including multiple spectral indices our spec-
tral groups successfully separated mixed growth
responses from areas of regenerative conifer. Spectral
recovery rates for mixed growth did not differ from
rates for the regenerative conifer group based on a
single index, but multiple indices improved separa-
tion. Past research in dry conifer forests has struggled
to differentiate deciduous from conifers using spec-
tral data (Blanco-Rodriguez et al. 2023). To address
these difficulties, Blanco-Rodriguez et al. (2023) sug-
gest monitoring approaches that combine climate,
site-level conditions, and spectral data. Importantly,
integrating environmental conditions increases the
accuracy of recovery monitoring from satellite data
(Pérez-Cabello et al. 2021), but our approach relying
on spectral data alone helps identify areas of similar
structural recovery despite differences in environ-
mental conditions. For example, regrowth delay was
predominant in cold-dry sites, but regrowth delay was
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also located in areas that were normally wet and pro-
ductive (Fig. 6). Including environmental conditions
in classification may fail to identify areas unexpected
to have regrowth delay, such as normally wet and pro-
ductive regions. In all cases, it is important to validate
spectrally identified recovery with field data because
spectral responses, while useful to identify overall
rates of vegetation growth, cannot universally distin-
guish shrubs and trees.

Our space-for-time approach lacks precision
to compare group temporal trends. Consider the
regrowth delay class, which had extremely high stem
densities 15-16 years post-fire, and lower stem den-
sities in year 21. The drop in stem density between
years 15 and 21 could signify the start of stem-exclu-
sion (Bartels et al. 2016), but it could also be a result
of site differences not considered in our space-for-time
approach. Fortunately, BC is currently conducting a
province-wide lidar acquisition (White et al. 2025).
This acquisition will provide high-quality, spatially
continuous lidar data, allowing future work to test how
site-level differences influence recovery, such as the
onset of stem exclusion. In addition to capitalizing on
lidar data, future work should incorporate additional
information on tree species composition and structure
using remote sensing and/or field data (White et al.
2023). This information could clarify how observed
structural recovery aligns or does not align with man-
agement goals and historic ecosystem composition
(Johnstone et al. 2016). For example, mixed growth
responses may align with pre-fire composition (Jor-
gensen et al. 2023) and/or historic deciduous forest
composition altered by 20th-century forest manage-
ment (Brookes et al. 2021; Baron et al. 2022).

Structural group variability was associated
with anomalous post-fire climate

We found that structural recovery was best pre-
dicted by anomalous post-fire temperatures and
precipitation, echoing research findings in conifer-
ous dry Western US forests (Table S3, Young et al.
2019; Guz et al. 2021). Prior research suggests that
drought conditions, measured via climate moisture
deficit (CMD), negatively impact coniferous recruit-
ment (Talucci et al. 2019; Stevens-Rumann et al.
2022; Davis et al. 2023). In our study, colder dry
summers were more important than typical CMD.

The decreased importance of CMD may be because
lodgepole pine, the dominant conifer of the study
area, is less impacted by drought than other conifers
(Harvey et al. 2016). Further, lodgepole pine estab-
lishment and growth can be limited at low tempera-
tures (Hansen and Turner 2019).

The positive association of a single particularly
cold summer and the slow establishment rates of
regrowth delay suggests lodgepole pine establish-
ment in sub-boreal may be temperature limited.
The relationship between delayed lodgepole pine
establishment and lower temperatures has also been
found in subalpine environments in southern Colo-
rado (Guz et al. 2021) and post-fire forests of the
Greater Yellowstone ecosystem (Hansen and Turner
2019). This delayed establishment was also noted in
regions impacted by MBP in the mid-2000s (Dhar
et al. 2016a). In our study area, the average sum-
mer temperature from 1980 to 2010 was 12.7 °C,
below the 14 °C threshold identified by Hansen and
Turner (2019) as the temperature where lodgepole
pine recruitment is limited more by temperature
than moisture.

The two structural groups with a higher decidu-
ous proportion had different responses to extreme
post-fire temperatures and precipitation (Fig. 6). For
example, mixed growth was negatively impacted
by dry summers and anomalously warm years.
Conversely, conifer dominant mixed growth was
positively associated with anomalously warm aver-
age annual temperatures. These differences could
reflect the availability of underground resources,
as resprouting deciduous species (both aspen
and shrubs) can rely on surviving underground
resources to buffer impacts of extreme climate
(Young et al. 2019; Johnstone et al. 2020). Impor-
tantly, these unburned below-ground resources are
inaccurately captured with satellite-estimated burn
severity (Loboda et al. 2013). Satellite measures of
burn severity characterize remaining above-ground
vegetation post-fire (Miller and Thode 2007; Frol-
king et al. 2009). To better understand the rela-
tionship between climate extremes and deciduous
regeneration post-fire, recovery models should also
consider the remaining soil organic material that
facilitates post-fire deciduous resprouting (Shenoy
et al. 2011), delays competing conifer establishment
(Stark et al. 2006), and enables deciduous resprouts
to endure climate extremes (Young et al. 2019).
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The association between lagged coniferous
establishment and cold summers in our studies’
sub-boreal environment has important implica-
tions given observed and projected warming in BC
(MacKenzie and Mahony 2021). While increas-
ing temperatures may decrease areas with delayed
regrowth, drought conditions could accompany
rising temperatures. Prolonged droughts can inde-
pendently cause regeneration lag (Guz et al. 2021)
or even coniferous regeneration failure (Stevens-
Rumann et al. 2022). As multi-annual climate
conditions have also been linked to differences in
coniferous recovery (Kemp et al. 2019; Shuang and
Christopher 2012), future research should consider
the impact of prolonged (>1 year) droughts and
mean climate conditions multiple years post-fire.

Site-specific conditions had a minimal impact
on individual structural groupings

We found pre-fire basal area (BA) was the third most
important driver across all structural groupings. This
finding may reflect the similar pre-fire BA between
regenerative conifer and conifer dominant mixed
growth groups. Research in the boreal forest sup-
ported that greater pre-fire BA was associated with
slower NBR recovery rates (White et al. 2023). The
authors found that areas that had not yet achieved
spectral recovery (80% of the pre-fire NBR value) by
the end of the time series had a higher pre-fire BA.
However, in the study of White et al. (2023) sites
with a higher pre-fire BA also had a higher pre-fire
NBR, meaning that sites required a greater magni-
tude of change to reach pre-fire NBR values. In our
research, higher pre-fire BA were generally related
to areas with greater rates of spectral recovery. Yet,
we emphasize that our spectral recovery metric (rate
of recovery) differs from the years-to-recovery met-
ric of White et al. (2023). In our sub-boreal study
region, productivity is soil nutrient-limited (DeLong
et al. 2003). While we did not include soil nutrients in
models, areas of high soil nutrient density may drive
spatial clusters of high pre-fire BA. Thus, interactions
among ecological drivers, such as pre-fire BA and
soil nutrients, may cause differences in recovery driv-
ers across regions.

Contrary to recent research, we found a minimal
impact of elevation on recovery trends. White et al.
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(2023) found a greater proportion of high elevations
field plots had not yet spectrally recovered by the end of
the time series (25 years post-fire). Similarly, Kiel and
Turner (2022) found elevation had the largest impact
on spectral recovery and stem densities 30 years post
fire, followed by slope and distance-to-seed. However,
Kiel and Turner (2022) did not consider post-fire cli-
mate conditions and White et al. (2023) did not directly
test the impact of elevation against climate conditions.
Thus, differences between our findings and those Kiel
and Turner (2022) as well as White et al. (2023) sug-
gest that the importance of recovery drivers likely
depends on which drivers are considered, how recov-
ery is defined, and which spectral metrics are used for
recovery assessments. Additionally, Kiel and Turner
(2022) measured recovery of a single fire year (1988).
This suggests that recovery from a single fire year,
which experiences the same after fire conditions, may
be more driven by site-level differences such as eleva-
tion, but for fires that occur in different years, recovery
may be more controlled by differences in post-fire cli-
mate conditions across years.

Post-fire climate and the need for adaptive
post-fire management

The need for post-fire management actions is often
based on assumed impacts of recovery drivers (North
et al. 2019). For example, Larson et al. (2022) pro-
vide a post-fire planting framework that prioritizes
planting in areas of high burn severity, unfavorable
site composition, and projected harsh future climates.
In their framework, harsh future climates are based
on projected, rather than measured, climate condi-
tions (Larson et al. 2022). Given the link with conif-
erous establishment and measured post-fire climate
observed in our research and elsewhere (Littlefield
2019), we suggest post-fire management should adapt
to measured post-fire climates.

Post-fire management must adapt to observed cli-
mate conditions to preserve key ecosystem services.
For example, vegetation mitigates the risk of post-
fire landslide (Hope et al. 2015). In the context of our
work, regrowth delay had the greatest amount of bare
ground 8-9 years after fire. Regrowth delay was more
likely in areas with particularly cold or dry summers,
suggesting that cold and dry summers may promote a
longer period of barren land. In some cases, planting



Landsc Ecol (2026) 41:14

Page 19 of 23 14

deciduous species would improve the rate of overall
vegetation recovery, which promotes slope stability
and decreases future fire risk (Wang et al. 2016).

Frameworks prioritizing post-fire  management
responses based on site conditions and projected cli-
mate, such as Larson et al. (2022), are crucial for forest
management. However, given the importance of anoma-
lous post-fire climate found in our work and elsewhere
in the literature (Stevens-Rumann et al. 2018; Davis
et al. 2023), frameworks should be iterative, with an ini-
tial response developed immediately post-fire and later
adaptation based on post-fire climate conditions. Swan-
son et al. (2023) argue that if post-fire climate conditions
promote strong coniferous growth that results in dense
young forest, then additional management intervention
may be necessary to decrease fire risk. Our approach to
quantifying recovery across the entire burned landscape,
helps forest managers prioritize action areas, including
regions with heavy post-fire fuel loads and/or barren
landscapes prone to landslides (Larson et al. 2022; Lau
2022; Swanson et al. 2023; Davis et al. 2024).

Conclusions

Using a combination of satellite and RPA lidar data,
we found strong post-fire conifer recruitment across
areas of BC’s sub-boreal forest that were burned by
high severity wildfires. Additionally, we found that
early (i.e., within 5 years’ post-fire) satellite-meas-
ured spectral recovery indicated forest groups with
different patterns and rates of structural forest recov-
ery. Post-fire anomalous summertime climates and
pre-fire BA best predicted these structural recovery
groups. Specifically, abnormally cold and dry sum-
mers delayed conifer establishment, while warm
years and/or higher pre-fire BA increased post-fire
deciduous recruitment. Effective forest manage-
ment in a rapidly changing climate with intensi-
fied fire regimes requires an understanding of what
drives post-fire forest recovery. To extend the use
of the work presented herein, future research should
investigate how longer-term climate conditions (e.g.,
drought conditions over multiple years) or better soil
burn severity classification (which captures available
below-ground resources) improve the detection of
post-fire structural recovery. Ultimately, our structural
recovery groupings and associated ecological drivers

help forest managers prioritize action and non-action
areas. Action areas include regions of regrowth delay,
where barren landscapes could promote slope insta-
bility, while non-action areas, such as regions of coni-
fer-dominant mixed growth, restore the historic forest
composition and mitigate future fire risk. Importantly,
the likelihood of an action area, such as regrowth
delay, is associated with post-fire climate extremes.
Thus, monitoring and management should capture the
initial fire event and adapt as conditions evolve during
the crucial early recovery period.
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