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Abstract 
Context  Recent large and high-severity wildfires 
have burned vast areas of coniferous forests through-
out Western North America. These burned landscapes 
are recovering amid increasingly frequent climate 
extremes, such as drought. We need to understand 
how post-fire climate extremes and other ecological 
drivers (such as fire impacts) influence patterns and 
trends of coniferous recovery.
Objectives  We worked at a landscape scale 
(> 400,000 hectares) to investigate the association 
between distinct post-fire forest recovery and eco-
logical drivers in dry sub-boreal forests. We created 

structural recovery groups distinct in patterns and 
trends of coniferous cover and density and then mod-
eled their association with ecological drivers.
Methods  We used Landsat time-series data to iden-
tify unique spectral recovery, which we grouped 
based on post-fire regrowth and stocking estimates. 
Remotely Piloted Aircraft light detection and ranging 
(lidar) provided structural estimates 5–21 years post-
fire. We modeled the association between structural 
recovery groups and ecological drivers with random 
forests. For each category of drivers (site conditions, 
climate, climate anomalies, pre-fire composition, and 
fire impacts), we used individual models to identify 
important drivers. We then incorporated the most 
important drivers in a global model to highlight the 
drivers that were important across categories.
Results  Initial spectral trends indicated longer-term 
differences in structural forest recovery. Climate 
anomalies (such as post-fire extremes in temperature 
and precipitation) and pre-fire basal area best pre-
dicted observed structural groupings—abnormally 
cold and dry summers after the fire were associated 
with slow conifer establishment. Comparatively, areas 
with a higher pre-fire basal area maintained a mixed 
canopy of deciduous and coniferous stems.
Conclusions  At a landscape scale, post-fire climate 
conditions best predicted structural forest recovery, 
suggesting management plans should be adaptable to 
the conditions experienced post fire.
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Introduction

Global increases in twenty-first century fire severity 
and intensity (Pausas and Keeley 2021) are accentu-
ated in forests of Western North America (NA, Abat-
zoglou et al. 2021; Parisien et al. 2023). In the prov-
ince of British Columbia (BC), the last decade has 
seen multiple years of record-breaking wildfire sea-
sons, linked both to historic fire suppression (Baron 
et  al. 2022) and increasingly common hot and dry 
summers (Hanes et  al. 2019; Parisien et  al. 2023). 
Forests are not only more likely to burn because of 
climate change (Hanes et al. 2019), but also recover 
amidst a warmer and drier climate (Davis et al. 2019).

Historically, Western NA forests were conifer-
dominant (Hessburg et  al. 2005), but altered fire 
dynamics alongside a changing climate could pro-
mote failed conifer regeneration (Prichard et  al. 
2021). Distinct post-fire conifer growth, henceforth 
structural recovery, describes recovering forests that 
vary in conifer composition, structure, and growth 
rates. Post-fire seed availability, from the soil or 
remaining canopy, is a prerequisite for conifer estab-
lishment (Turner et  al. 1999; Stewart et  al. 2021). 
Ecological drivers, including site conditions or lega-
cies of the fire event control seed germination and 
germinant growth. Variability in the structural recov-
ery of conifers is then linked with spatial and tem-
poral variation in ecological drivers. These drivers 
can be split into categories that include: fire impacts 
(Taylor et  al. 2021), site-level topography (Peeler 
and Smithwick 2021), pre-fire vegetation conditions 
(White et  al. 2023), climatic regime (Chu and Guo 
2014), and post-fire climate conditions (Davis et  al. 
2023).

Fire impacts, such as remaining post-fire canopy, 
can alter seed availability, germination, and post-fire 
microclimate (Turner et  al. 1999; Peeler and Smith-
wick 2021; Smith-Tripp et al. 2022). Remaining post-
fire forest canopy can also protect conifer germinants 
from climate extremes (Davis et al. 2023) and fire can 
catalyze seedling germination in serotinous lodgepole 
pine (Pinus contorta var. latifolia) populations (Lotan 
1976). Yet the importance of fire impacts is variable. 

For example, serotiny in lodgepole pine is more com-
mon at high elevations and in the north (Lotan 1976). 
Comparably, environmental and site-level conditions, 
such as elevation or slope, alter conifer recovery inde-
pendent of species (Stevens-Rumann and Morgan 
2019). Across the Greater Yellowstone Ecosystem, 
Kiel and Turner (2022) found that higher elevations 
and steeper slopes caused sparse conifer growth 
(< 1,000 stems/ha) more than 30 years post-fire. Yet, 
such relationships are not ubiquitous: in the Blue 
Mountains of Oregon, Downing et al. (2019) found a 
positive relationship with elevation and conifer seed-
ling density.

Region and site history drive pre-fire vegetation 
conditions, which in turn impact conifer recovery. 
A high density and/or basal area of conifers pre-fire 
can increase the rate and density of conifer recovery 
(Harvey et al. 2016; White et al. 2023). Additionally, 
a higher pre-fire deciduous composition can result in 
rapid deciduous growth post-fire (Haire and McGari-
gal 2008). Post-fire deciduous growth can facilitate or 
compete with conifer growth—Downing et al. (2019) 
found deciduous growth negatively impacted recov-
ery of most conifers but protected young ponderosa 
pines (Pinus ponderosa) from climate extremes. 
Finally, disturbance histories, including consecu-
tive burns or insect attacks, can dramatically alter 
recovery patterns. Short intervals between burns can 
limit available serotinous seeds because the trees that 
establish after the first burn do not reach sexual matu-
rity before the second burn (Braziunas et  al. 2023). 
Other disturbances, such as Western Canada’s infa-
mous mountain pine beetle (MPB) infestation, can 
cause canopy death, introducing additional fuel for 
fire (Talucci et  al. 2022), as well as decreasing the 
available seed stock (Teste et al. 2011).

Pine forests throughout BC were decimated by 
MPB, raising important questions on how the legacy 
of the MPB impacts both the likelihood of fire and 
recovery post-fire. Starting in the early 2000s, the 
MPB outbreak impacted over half (50%) of mature 
lodgepole pine stands (Dhar et  al. 2016b). Many 
researchers expected that the aftermath of MPB 
would be extensive areas of tree mortality, which 
would be ideal fuel for high-intensity and high-sever-
ity fire (Collins et al. 2012). However, observed out-
comes of MPB and fire are more mixed (Harvey et al. 
2014). In the early years after initial MPB attack, 
fire susceptibility increases, but in later years, the 
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likelihood of fire is lower (Harvey et  al. 2013). Yet, 
as MPB-affected trees die and fall to the ground, they 
leave behind large fuel that, when ignited, burn the 
soil at high severities (Perrakis et  al. 2018; Talucci 
et  al. 2022). Given the expansive area impacted by 
MPB, it is crucial to consider how combined dis-
turbance of MPB and fire could impact ecosystem 
recovery (Dhar et al. 2018).

In conifer forests south of BC, recent models of 
post-fire recovery heavily emphasize the impor-
tance of extreme post-fire climate, such as drought or 
extreme heat on conifer recovery ( Vanderhoof et al. 
2021: Stevens-Rumann et  al. 2022; ). For example, 
Talucci et  al. (2019) studied lodgepole pine recruit-
ment following wildfire and bark beetle infestation in 
interior BC. They found that post-fire climate mois-
ture deficit (CMD) was negatively correlated with 
seedling density, but the sample size-limited study 
conclusions. Across the Western US region, Davis 
et  al. (2023) combined observations from > 10,000 
field plot samples to model post-fire recruitment 
probability. In their models, a year of extremely 
hot and dry conditions negatively impacted conifer 
recruitment, but impacts varied across scales, regions, 
and species (Davis et  al. 2023). The importance of 
post-fire climate conditions has been demonstrated in 
dry forests of the Western US (Guz et al. 2021; Stew-
art et al. 2021) and in boreal environments (Boucher 
et  al. 2020; White et  al. 2023), but investigations of 
post-fire climate, relative to other drivers, are lacking 
in the dry sub-boreal region of interior BC.

To understand recovery drivers, landscape-level 
approaches are helpful to capture a gradient of eco-
logical drivers. Exemplars such as the meta-analysis 
of Davis et al. (2023) help clarify the impact of dif-
ferent drivers on ecosystem recovery. However, 
building such landscape-scale field datasets is costly, 
labour-intensive, and challenging to update. Litera-
ture syntheses, comparing individual study results 
from a diversity of environments, are another way 
to understand recovery drivers across scales (Bar-
tels et  al. 2016). However, BC’s sub-boreal region, 
despite encompassing over 12 million hectares, has 
had relatively few post-fire studies and lacks the 
extensive field sampling used in other meta-analyses 
(e.g., Davis et al. 2023). The lack of post-fire moni-
toring and research in the extensively burned sub-
boreal (Parisien et  al. 2023) could preclude us from 
capturing possibly novel landscape transitions – such 

as conifer forests transitioning to conifer grasslands 
(Hamilton and Burton 2023).

Satellite imagery is a strategic way to overcome the 
data deficits in BC’s under-sampled sub-boreal for-
ests (Chu and Guo 2014). Long-term and historically 
continuous satellite measures, such as the 40-year 
Landsat archive, capture temporal trends in surface 
reflectance and associated land cover (White 2024). 
Spectral indices, calculated from surface reflectance, 
describe different elements of forest structure. The 
rates of spectral recovery for different indices, like the 
normalized burn ratio (NBR), capture structural for-
est development, including patterns of stem density or 
time-points of conifer establishment (Kiel and Turner 
2022; Smith-Tripp et  al. 2024a; White et  al. 2023). 
Using early spectral recovery trends (e.g. five years), 
descriptive of longer (e.g. 20 years) distinct structural 
recovery, helps infer how recently burned environ-
ments may structurally recover in the future (Pick-
ett 1989; Pettorelli et  al. 2005). In this case, future 
recovery rates, both structural and spectral, could be 
inferred by observations in older burns with similar 
early spectral responses (Ye et al. 2021; Smith-Tripp 
et al. 2024b).

In the face of widespread fires, landscape-level 
forest structure monitoring can leverage the Landsat 
archive as well as the spatially continuous structural 
measures from light detection and ranging data (lidar) 
to identify how early spectral responses are attributed 
to structural development over time (Menick et  al. 
2024). Even early spectral responses (< 5 years) have 
been linked to longer-term differences in post-fire 
structural growth (Smith-Tripp et  al. 2024b). Lidar 
captures spatial patterns of recovery at the scale nec-
essary to link structural estimates to satellite-based 
temporal trends, and how these patterns and trends 
vary based on ecological drivers (Weiss et al. 2023).

Our study capitalizes on the link between spectral 
responses and structural recovery (Smith-Tripp et al. 
2024b) to investigate the relative impact of recov-
ery drivers at a landscape scale. We ask which eco-
system drivers are associated with different patterns 
and trends of structural recovery. Our objectives 
were three-fold: (1) develop structural groupings that 
define forest structural recovery in relation to spectral 
recovery responses (2) determine the relative effect 
that different categories of drivers (e.g. post-fire cli-
mate or pre-fire conditions) have on structural group-
ings; and (3) across all recovery drivers, understand 



	 Landsc Ecol           (2026) 41:14    14   Page 4 of 23

Vol:. (1234567890)

which drivers were the most important across and 
within structural groupings. Our approach highlights 
recovery drivers with the greatest impact on post-
fire structural patterns and trends in the western sub-
boreal forests of British Columbia.

Methods

Study region

Our study area encompassed over 300 fires that 
burned nearly 500,000 ha of forest between 1985 and 

2017 in central British Columbia, Canada (Fig.  1, 
CWFIS). We concentrated on the sub-boreal spruce 
(SBS) and sub-boreal pine spruce (SBPS) biogeo-
climatic ecozones. The SBS and SBPS ecoregions 
cover 12 million hectares of rolling topography and 
high-elevation plateaus (600 – 1300  m elevation). 
The climate is continental with dry and cool grow-
ing seasons; temperatures and precipitation average 
12.3 ˚C and 166 mm, respectively (Wang et al. 2016). 
Soils are typically podzols or luvisols of glacial and 
glaciofluvial origin (DeLong et al. 2003). The historic 
fire regime in these ecozones was large stand-replac-
ing fires that occurred every 100  years, but recent 

Fig. 1   Burned areas included in research. (Top left) NTEMS 
identified fires (yellow) and areas above high-severity thresh-
old (red) based on change magnitude. (Top right) Years of fire 
event from 1985–2017. Inset map at top right notes location 

or study area within British Columbia. (Bottom) column chart 
displaying hectares (ha) of high-severity fire for all study years. 
The 2017 record wildfire season is highlighted. Total area of 
fires = 430,000 ha
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fire events were larger and more severe than historic 
norms (Pelletier et al. 2024). After these stand-replac-
ing burns, similar to other sub-alpine and sub-boreal 
North American forests, post-fire regrowth consists 
of rapid lodgepole pine (Pinus contorta var. latifolia) 
canopy establishment alongside resprouts of decidu-
ous species such as trembling aspen (Populus tremu‑
loides) and paper birch (Betula papyrifera; Day 1972; 
Pausas and Keeley 2021). Many areas of the SBS and 
SBPS are single-species stands of lodgepole that were 
established after the last fire event (Meidinger and 
Pojar 1991). Other conifer species typically establish 
beneath this lodgepole pine canopy. These species 
include: spruce (including Engelman, white, and their 
hybrid, Picea engelmannii, glauca, and engelmannii x 
glauca), Douglas-fir (Pseudotsuga menziezii), subal-
pine fir (Abies lasiocarpa; DeLong et al. 2003).

Methods overview

Our research fused spectral data from Landsat satel-
lites with a chronosequence of RPA lidar-derived for-
est structural data (5–21  years post-fire) to describe 
forest structural recovery following high severity fire. 
Building on the link between unique spectral recov-
ery responses and structural recovery (Smith-Tripp 
et  al. 2024a; 2024b) we created post-fire structural 
recovery groups using a combination of early spectral 
responses from Landsat and a space-for-time dataset 
of forest structure from RPA. We investigated how 
these observed structural groupings were predicted by 
ecological drivers (climate, post-fire climate anoma-
lies, fire-impacts, and pre-fire landscape characteris-
tics). An overview of our methodology is presented 
in Fig. 2.

High-severity wildfire areas were identified using 
Landsat-based National Terrestrial Ecosystem Moni-
toring System (NTEMS) data (Hermosilla et  al. 
2016). These data layers use annual NBR measures to 
generate Canada-wide maps of disturbance year, type, 
and magnitude from 1985–2017. Change magnitudes 
are synonymous with the differenced normalized burn 
ratio (dNBR) calculated as the difference between 
the NBR value the year before the fire and the low-
est NBR value in the subsequent two years post-fire 
(Hermosilla et  al. 2016). We converted NTEMS 
change magnitude estimates into Burned Area Reflec-
tance Classification – Adjustable (BARC-A) values, 
which range from 0 to 255. BARC-A values describe 

the condition of the surface vegetation that remains 
after a fire (Hudak et al. 2007). The province of BC 
uses BARC-A values and additional aerial validation 
to classify unburned, low, moderate, and high sever-
ity burned areas (BC Ministry of Forests 2023), but 
classifications are only available for fires after 2015 
(BC Ministry of Forests 2021). As our study covered 
1985–2017, we set a minimum BARC-A threshold of 
130 for the transformed NTEMs magnitude estimates, 
constraining research to areas of high and moderate 
severity (BC Ministry of Forests 2021).

To eliminate differences in post-fire management, 
we also removed areas reported as replanted (British 
Columbia Data Catalogue 2022). Noting the expan-
sive area of BC impacted by MPB, we checked for 
overlap between selected fire events and areas of his-
toric MPB outbreaks. Regions affected by MPB were 
identified from BC aerial overview survey (AOS) 
data. As AOS data is known to have a high error rate 
(Bourgeois et al. 2018), we required disturbance poly-
gons to have contained MPB infestations in multiple 
years. We then assessed the overlap between MPB-
affected forest polygons with areas the NTEMS algo-
rithm identified as experiencing a non-stand-replac-
ing disturbance followed by a fire event (Hermosilla 
et al. 2019). The total area impacted first by MPB and 
then a high-severity fire was low (less than 4% of the 
study area), and deemed inconsequential to study out-
comes. Thus, the final study area covered 430,000 ha 
and is highlighted in Fig. 1.

Structural recovery groupings

To create structural recovery groups, we first clus-
tered post-fire spectral metrics to identify unique 
spectral responses. Spectral metrics described 
the rate and total magnitude of spectral recovery 
in the first five years post-fire. The three spectral 
metrics were calculated for seven spectral indices 
and included (1) regrowth magnitude, (2) median 
yearly rate of change (slope), and (3) the spectral 
reflectance measure 5  years after the fire (indica-
tive of the post-fire landcover; Hicke et  al. 2003). 
Thus, 21 post-fire spectral metrics (three metrics 
for seven spectral indices) were derived from post-
fire measures of seven indices. Indices include the 
normalized difference vegetation index (NDVI), the 
normalized difference moisture index (NDMI), the 
normalized burn ratio (NBR), and the tasseled cap 
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indices (brightness – TCB, wetness – TCW, green-
ness – TCG, and angle – TCA). For more details on 
how these metrics are calculated see Smith-Tripp 
et  al. (2024b). Final clustering also included burn 
severity (dNBR). A total of 22 spectral metrics were 
standardized and used as inputs into an augmented 

Kmeans +  + algorithm, which iteratively groups 
pixels by similarity in n-dimensional (n = 22) space 
(Kapoor and Singhal 2017). Final clusters mini-
mized the distortion criterion, which measures the 
distance between points and the associated cen-
troid (Kodinariya and Makwana 2013). Clusters 

Fig. 2   Overall research framework including development of 
structural groupings. Boxes beneath ‘drivers of recovery’ are 
the categories of drivers used in individual random forests that 

were then consolidated in a global random forest. The over-
all impact of drivers of recovery on structural recovery (final 
research objective) is accented in dark gray
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representing less than 1% of observations were 
excluded from further processing.

We merged spectral clusters into distinct struc-
tural groupings using a space-for-time sample of for-
est structural measures captured with RPA lidar. The 
forest structure sampling covered 1300  ha (an addi-
tional 500 ha compared to Smith-Tripp et al. (2024b)) 
of forests 5–21  years post-fire. We combined RPA 
lidar data and field measurements to model basal 
area (BA), bare ground (%), stem density (stems/900 
m2), and the ratio of coniferous to deciduous cover. 
To improve temporal continuity, we grouped samples 
into post-fire “epochs” of one-to-two-year periods: 
5–7, 8–9, 11–12, 15–16, and 21-years post-fire. For 
more details on RPA lidar data and associated lidar 
modelling, Supplemental Sect.  1 as well as Smith-
Tripp et al (2024a, b). We used RPA lidar structural 
estimates to merge unique spectral trends into distinct 
recovery groups. A distinct group could have differ-
ent stem counts, but potentially similar BA across 
years. We selected a PERMANOVA because it can 
capture dissimilarity across multiple factors and is 
robust to non-normal data (Anderson 2017). An ini-
tial PERMANOVA used in F-statistic to test if trends 
differed based on a dissimilarity matrix derived from 
estimates of stem densities, bare ground, basal area, 
and the proportion of conifer to deciduous by sample 
year (McArdle and Anderson 2001). Then, spectral 
clusters were merged into structural groups based 
on post-hoc tests of the PERMANOVA similarity 
estimates (p-value > 0.05; Todorov 2007). Based on 
these results we assigned structural grouping names 
that reflected their distinct patterns or trends, such 
as stem-density differences or the rate of coniferous 
establishment. For a more in-depth overview of the 
grouping process, see Smith-Tripp et al. (2024b).

Drivers of forest recovery

To investigate how recovery drivers impact structural 
recovery, we considered both individual drivers, such 
as elevation, and drivers by category, such as environ-
ment. Driver categories include: (a) environment (b) 
pre-fire vegetation condition and fire-impacts (c) cli-
mate and (d) post-fire climate anomalies. We selected 
drivers based on findings in similar ecosystem types. 
See Table 1 for data sources and literature support for 
driver selection.

Environmental conditions

Elevation data used the bare-ground Canadian Digi-
tal Elevation Model (CDEM) hosted by the BC data 
catalogue (GeoBC, 2014; Natural Resources Canada, 
2013). We used the elevation model to calculate addi-
tional indices including topographic position index 
(TPI) in 3 × 3 window, flow direction and transformed 
aspect (TRASP). Flow direction is a unitless index 
that describes the drainage of an area, indicative of 
site-level moisture dynamics (Metcalfe et  al. 2015). 
TRASP transforms aspect to range from 0–1, where 
0 is on northern aspects and 1 is on hotter southern 
aspects (Roberts and Cooper 1989). Soil types were 
obtained from a provincial digital soil map, classi-
fied using a random forest algorithm with validation 
plots and remotely-sensed climate and vegetation data 
(Heung et al. 2022).

Pre‑fire conditions and fire impacts

Pre-fire site conditions used provincial data-layers 
and satellite-based models. Site-type was from the 
Biogeoclimatic Ecosystem Classification system 
(BEC) subzone. The BEC subzone describes precipi-
tation and temperature (e.g., moist-cold) of a given 
site relative to conditions throughout BC (Meidinger 
and Pojar 1991). Land cover type, species com-
position, and BA were derived from NTEMS data 
(Matasci et al. 2018; Hermosilla et al. 2022b, a). For 
land cover and species composition, we used the most 
common class five years prior to the fire. For pre-fire 
BA, we calculated mean BA (m2/ha) five years prior 
to the fire.

Fire impacts were calculated using the NTEMS 
disturbance attribution data (Hermosilla et al. 2016). 
Generally, accurate assessment of fire impacts on 
soil and canopy from satellite data is limited (Chu 
and Guo 2014). Additionally, while fire severity is 
an important driver to consider, it was excluded from 
models because our study focused only on areas of 
high severity fire and included severity within initial 
cluster development. We were constrained to impacts 
such as the distance to patch-edge (m) and patch size 
(ha). We calculate these metrics by grouping burned 
pixels for each study-year (i.e., fire events).
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Table 1   Data sources or calculations citations for drivers of forest recovery

Abbreviation and units for each variable. References note data source. For each driver, a reference for both the data source, and prior 
reference support (last table column). Note: climate anomalies used in models are italicized

Type Explanatory vari-
able

Abbreviation /Unit Data Source Data Reference Driver Reference

Site/Environmental 
Conditions

Elevation Elev (m) Global digital eleva-
tion model

Natural Resources 
Canada, (2013)

Bright et al. (2019)

Topographic posi-
tion index

TPI Elevation data Littlefield  (2019)

Soil type Soil Terrestrial ecosys-
tem mapping

Heung et al. (2022) Baltzer et al. (2021)

Flow direction Flow direction Elevation data Kopecký et al. 
(2021)

Harvey et al. (2016)

Aspect index TRASP Elevation data Roberts and Cooper 
(1989)

Littlefield et al. 
(2016)

Ecosystem subzone Subzone Ecosystem Clas-
sification

Meidinger & Pojar 
(1991)

BC Forest Practices 
Board (2020)

Pre-Fire Conditions Pre-fire BA Pre-fire BA (m2/ha) NTEMS Matasci et al. 2018 White et al. (2023)
Pre-fire landcover 

class
Pre-fire landcover NTEMS Hermosilla et al. 

(2022a, b)
Meng et al. (2015)

Pre-fire Species type Pre-fire species NTEMS Hermosilla et al. 
(2022)

Fire Impacts Patch size Patch (ha) Derived from 
NTEMS burned 
area (Hermosilla 
et al. 2016)

Kemp et al. (2016)
Distance to live-

edge
Edge (m) Littlefield et al. 2016

Climate (& Post-fire 
Climate Anoma‑
lies)

Mean annual tem-
perature

MAT (°C)
warmest year

ClimateNA Wang et al. (2016) Bright et al. (2019)

Mean annual pre-
cipitation

MAP (mm)
driest year

Bright et al. (2019)

Precipitation as 
snow (mm august 
– july)

PAS (mm)
min snow

Talucci et al. (2019)

Hargreaves climatic 
moisture deficit

CMD (mm)
max CMD

Davis et al. (2023)

Summer average 
temperature

Summer avg. t
average coldest 

summer T

Guz et al. (2021)

Maximum summer 
temperature

Summer max t
max warmest sum‑

mer T

Guz et al. (2021)

Minimum summer 
temperature

Summer min T
min coldest sum‑

mer T

Hansen and Turner 
(2019)

Minimum winter 
temperature

Winter min t
min coldest winter T

Meng et al. (2015)

Average spring 
precipitation

Spring precip
min spring precip

Hankin et al. (2019)

Average summer 
precipitation

Summer precip
min summer precip

Guz et al. (2021)

Average autumn 
precipitation

Fall precip
min fall precip

Harvey et al. (2016)
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Climate and post‑fire climate anomalies

Climate data were generated from ClimateNA soft-
ware, which uses elevation models to downscale data 
from > 10,000 meteorological stations across North 
America via bilinear interpolation and dynamic local 
downscaling (Daly et  al. 2008; Wang et  al. 2016). 
First, we used our 30 m elevation data and ClimateNA 
to calculate and downscale 1981–2010 climate nor-
mals at seasonal and annual timesteps. Prior research 
studies informed climate variable selection (Meng 
et  al. 2015; Petrie et  al. 2016; Hankin et  al. 2019; 
Bright et al. 2019; Littlefield 2019; BC Forest Prac-
tices Board 2020; Hoecker et al. 2020). Climate nor-
mals described average annual and growing season 
aridity and temperatures. We used climate normals to 
calculate standardized z-scores of climate extremes. 
Throughout the text, these extremes are referred to 
as “climate anomalies.” Climate anomalies used the 
standardized maximum and/or minimum measure of 
climate variables for the first five years post-fire to the 
climate normal and the standard deviation for years 
1981–2010. In Table  1, selected climate anomalies 
are included in italics below the climate normal used 
to calculate them.

Modeling recovery drivers impact on structural 
recovery groups.

To investigate the association between recovery driv-
ers and recovery groupings, we used random forests 
(RF) modeling where the response variable was the 
structural recovery group. We selected a random for-
est approach for three key reasons: (1) RFs are robust 
to overfitting with a large number of ecological pre-
dictors, (2) they do not require linearity or independ-
ence among predictors (Fox et  al. 2017); and (3) 
they are computationally efficient for large datasets 
(Wright and Ziegler 2017). For model building, we 
selected a stratified random sample of 1% of burned 
pixels (1985–2017; n = 48,766) stratified by the four 
structural groups. To limit spatial autocorrelation, 
sampled pixels were a minimum distance 90 m apart, 
which we split into training (70%) and testing (30%) 
sets.

Our RF modeling used a tiered approach. 
First, we built four individual RFs for each driver 

category (e.g., environmental conditions or cli-
mate). We used the accuracy estimates of the indi-
vidual RFs to test which category of drivers best 
predicted structural groups. We also used the vari-
able importance of individual RFs to extract the 
top five drivers for each category. The global RF 
combined the dominant drivers of each category. In 
the cases where the categories had fewer than five 
variables, we included drivers whose permutational 
variable importance estimate was greater than 0.05. 
The tiered RF approach eliminated redundant vari-
ables. A total of 34 recovery drivers were used in 
four individual RF models (Table 1), which consoli-
dated to 19 recovery drivers for the global RF. For 
individual RFs, the number of variables tested in 
each split (mtry) was 2, and the number of decision 
trees (ntree) was 500.

The global RF model tested five variables at each 
split (mtry), the number of decision trees (ntree) was 
500, and the minimum terminal node size (node‑
size) was five. As we modeled classes, the split rule 
used extra trees, and the performance measure used 
the misclassification rate. We tested the accuracy 
of the global RF model based on out-of-bag (OOB) 
error with a training dataset and using validation data 
external to the RF model (sample size = 14,440). To 
understand the importance of recovery drivers within 
and across structural groups, we calculated condi-
tional variable importance across the global model 
and for each structural grouping. We ranked impor-
tant recovery drivers using the Boruta algorithm, 
which measures the mean importance of all drivers 
included in the model compared to random noise in 
the data when fit multiple times (Kursa and Rudnicki 
2010). To understand the likelihood of observing 
structural responses for different values of recovery 
drivers, we calculated the partial dependence for the 
six most important drivers by structural group.

All models were built in an R environment (R Core 
Team 2023). RF modeling used the ranger pack-
age (Wright and Ziegler 2017). We used the Boruta 
algorithm from the Boruta package to calculate con-
ditional variable importance (Kursa and Rudnicki 
2010). Partial dependence was calculated using the 
pdp package (Greenwell 2017).
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Results

Identifying structural groups

Structural groupings described variability in for-
est structural development through time and across 
structural variables (Fig. 3). Data-clustering resulted 
in 8 unique spectral clusters that captured 47% of 
variance in spectral metrics. For these 8 unique clus-
ters, results of PERMANOVA and post-hoc analysis 
identified four unique structural groupings within 
and across years (F (1, 14,385) = 40.62, p < 0.01; Fig 
S1, Table S2). See Fig. S2 for illustrative orthopho-
tos comparing groups 15  years post-fire. Structural 
groups were labelled as follows:

Mixed Growth: strong deciduous tree and shrub 
dominance early on (average in year 5–7 post-
fire = 48% deciduous) with a low proportion of bare 
ground in later years (average = 7.9%).

Regrowth Delay: a high proportion of bare ground 
for the first decade (average in years 8–9 = 75%) 
replaced by dense coniferous stems (average = 10,500 
stems/ha in years 15–16).

Regenerative Conifer: Strong early conifer-
ous regrowth (average coniferous cover in years 
8–9 = 84%) with high-stem densities in later years 
(highest stem density estimates in year 21 aver-
age = 15,035 stems/ha).

Coniferous Dominant Mixed Growth: Generally 
lower stem densities (average in year 15–16 = 5,500 
stems/ha) that corresponds with lower BA (average in 
year 21 = 0.07 m2/ha).

The most frequently observed grouping was regen-
erative conifer (38%) followed by regrowth delay 
(27%), while coniferous dominant mixed growth 
and mixed growth were less commonly observed 
(19.7–15.3%). Across the study area, mixed growth 
and coniferous dominant mixed growth were more 
common in the north whereas regrowth delay was 
more common in the south of the study region 
(Fig.  3). Mixed growth was common in smaller 
patches – dominant in the northern part of the study 

region (Fig. 3, Fig. 4,). Regrowth delay and conifer-
ous dominant mixed growth are common in large fires 
– concentrated in the southwest of the study area.

Spectral differences among merged structural 
groups

Recovery groups varied in their scaled spectral 
recovery metrics used as inputs in k-means cluster-
ing. Generally, regrowth delay and conifer dominant 
mixed growth had lower slopes of spectral recov-
ery (Fig S3). Regrowth delay had the lowest slope 
of recovery for both TCW and NBR (scaled aver-
ages −0.72 and −0.95). Conversely, mixed growth 
and regenerative conifer had higher slopes of recov-
ery (scaled averages of 0.17 and 0.69 for NBR). 
Regenerative conifer had the highest slope of recov-
ery for the majority of indices, while mixed growth 
recovery had the highest slope of recovery for NBR 
(average = 0.73). Regenerative conifer also had the 
highest magnitude of regrowth for NBR, NDVI, 
TCA, TCB, TCG, while mixed growth had the high-
est regrowth for TCG and NDMI. Comparatively, 
areas that were identified as conifer dominant mixed 
growth had the lowest regrowth magnitudes across 
all indices (Fig S3). However, average spectral meas-
ures were similar between conifer mixed growth and 
regenerative conifer five years after the fire. Finally, 
burn severity varied across structural groups (H (3, 
n = 39,553) = 9,608.7 (p < 0.001)). Conifer domi-
nant mixed growth and regenerative conifer had the 
greatest burn severities (scaled averages −0.65 and 
−0.55 respectively). While regrowth delay and mixed 
growth had lower estimates of burn severity (scaled 
averages −0.43 and −0.48).

Structural groupings are predicted by recovery 
drivers

Following our tiered modeling approach, we first 
used four individual random forests to assess the pre-
dictive power of recovery drivers by category. Indi-
vidual random forests were built for (1) environment 
and site conditions, (2) pre-fire conditions and fire 
impacts, (3) climate conditions, and (4) post-fire cli-
mate anomalies. For individual RFs, RFs of post-fire 
climate anomalies and typical climate conditions had 

Fig. 3   Structural estimates for each post-disturbance epoch by 
group. Black lines are the median structural value with boxes 
spanning the interquartile range and 95% confidence values. 
Black points are the mean structural value. Sample size for cal-
culations is noted in Table S3. Note that mixed growth was not 
identified in areas sampled 21 years post-fire

◂
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the highest overall accuracy (out-of-bag (OOB) accu-
racy 83 and 84% respectively, Table  S3). Site-level/
environmental conditions had an overall accuracy 
of 54. Finally, pre-fire conditions and fire impacts 
had an accuracy of 66%. Building on the individual 
models, the global RF, which used dominant drivers 
identified for individual models, included 19 predic-
tor variables. The global RF OOB accuracy was 84%, 
and when tested using an independent validation 
dataset the overall accuracy was 82%—supporting the 
model was not overfit. Regenerative conifer was pre-
dicted most accurately (mean of precision and recall 

(F-score) of 89%, Fig. S4), while conifer dominant 
mixed growth was predicted with the lowest accu-
racy (F-score = 85%). Both conifer dominant mixed 
growth and regenerative conifer were frequently mis-
classified as mixed growth (12% of samples).

In the global model, anomalously cold and dry 
summers were the most important predictors of 
observed groupings (minimum summer precipi-
tation and average coldest summer temperature, 
Fig.  5). Annual climate anomalies, such as the 
warmest year and minimum summer temperature 
were also important. In the Boruta algorithm, when 

Fig. 4   Spatial distribution of structural groupings across the 
sub-boreal spruce and sub-boreal pine spruce Ecozones – inlay 
map shows ecozone location within BC. Hexagons are the 
most common structural group within each 10,000-ha area. 

Subsets shown left of the map are the groups at a 30 m resolu-
tion for two large fires (A—Chelaslie River Fire 2014, B- Pla-
teau Complex Fire 2017). Locations of subset are noted left of 
map
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these metrics were removed, the explanatory power 
of the model decreased by 54 and 58% respectively. 
Typical climate conditions, including minimum 
winter temperature, or average fall and summer 
precipitation, generally followed climate anoma-
lies in overall importance. Fire impacts (patch size 

and distance-to-edge) and site-level/environmen-
tal conditions (soil type, subzone, TRASP, and 
elevation) had similar relative importance values 
(41–45%). Topographic position had a notably 
lower importance than other variables (relative 
importance = 12%).

Fig. 5   Boxplots for variable importance for random forest built for the global model with all driver Categories. Distribution is the 
Boruta variable importance for 500 random forest trees. Importance range 0–100, where 0 is no impact
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The relative effects of dominant ecological drivers 
on structural groupings

We used the global model to compare the marginal 
effects of the six most important drivers. Partial 
dependence plots demonstrated structural group 
likelihoods were associated with different ecologi-
cal driver values (Fig.  6). In some cases, only one 
structural group had different responses to an ecologi-
cal driver, such as minimum summer precipitation. 
Regenerative conifer was the only structural group 
not negatively affected by minimum summer precipi-
tation (Fig.  6). Comparatively, coniferous dominant 
mixed growth was positively associated with warmest 
year. However, mixed growth was negatively related 
to warm post-fire years but positively associated with 
a lack of dry summers. Additionally, minimum snow 
deposition had a slightly positive effect on regenera-
tive conifer, and a slightly negative effect on conifer-
ous dominant mixed growth.

Pre-fire BA had variable effects on structural 
groups. Generally, groups with a higher proportion 

of deciduous stems after fire were positively associ-
ated with greater pre-fire BA (both mixed growth and 
coniferous dominant mixed growth had higher pre-
fire BA).

Differences in pre‑fire conditions and fire impacts 
across structural groups

The most important drivers for fire impacts and pre-
fire conditions categories in the global RF model were 
pre-fire BA and burned patch size. In the global RF, 
pre-fire BA was the third most important predictor 
(Fig. 5). Pre-fire BA estimates were highest in mixed 
growth (average BA = 24.60 m2/ha), while lowest pre-
fire BA estimates were in regrowth delay areas (12.5 
m2/ha). The lower significance of pre-fire BA in the 
overall RF (Fig. 5) is likely because pre-fire BA was 
similar between conifer dominant mixed growth and 
regenerative conifer (Fig. 7 pre-fire BA = 16.2 vs 16.0 
m2/ha respectively).

Fig. 6   Partial dependence plots for the top 6 most important 
drivers from global random forest (19 selected drivers). The 
X-axis represents predictor variable range, and the y-axis is 
likelihood for structural with all other variables in the random 

forest held constant. Variables are listed in decreasing impor-
tance for random forest. Labels above plots note the units for 
each driver. “Z” is the z-score standardized value based on cli-
mate data 1980–2010
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Patch size was the most important variable for 
fire impacts (compared to distance-to-edge). Similar 
to pre-fire BA, conifer dominant mixed growth and 
regenerative conifer had similar patch sizes (Fig.  7, 
patch size = 5.36 vs 6.40  ha). Comparatively, mixed 
growth had the smallest patch sizes (average patch 
size = 4.30 ha) and the highest pre-fire BA estimates 
(average BA = 24.60 m2/ha). Finally, regrowth delay 
had the highest average patch size (average = 6.2 ha).

Discussion

Post-fire trends and patterns of structural recovery 
were strongly impacted by a single year of cold or dry 
summers within the first five years after a fire (Fig. 6). 
We found eight unique spectral responses that char-
acterized four groups of structural forest recovery, 
each with different ratios of coniferous and deciduous 

cover, stem densities, and rates of conifer establish-
ment. Of the four categories of recovery drivers 
(environment, climate variables, post-fire climate 
anomalies, fire impacts and pre-fire conditions), post-
fire climate anomalies best predicted structural recov-
ery (Fig.  5). Specifically, anomalous cold and dry 
periods impacted regeneration timing and the ratio of 
deciduous stems; areas of delayed coniferous regen-
eration experienced particularly cold summers. In 
contrast, areas with a higher proportion of deciduous 
cover (coniferous dominant mixed recovery), were 
less likely to have cold summers and generally had 
summers with greater precipitation. Our approach, 
fusing spectral with lidar data to characterize struc-
tural forest recovery, addresses the important need for 
understanding recovery across the vast burned envi-
ronments of the sub-boreal.

Fig. 7   Boxplots of structural groupings for patch size cal-
culated from NTEMS dNBR data (left) and pre-fire mean (n 
= 5 years) BA in m2 / ha (right). Boxes are colored by struc-

tural group. Black lines are median structural value with boxes 
spanning the interquartile range and 95 % confidence values. 
Black points are the mean value for each structural group
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Early spectral responses described longer‑term 
differences in structural recovery

When the eight spectral clusters were merged into four 
unique groupings of structural recovery, the structural 
groups remained unique in spectral responses (Fig 
S3). Thus, these early spectral dynamics character-
ized longer-term differences in structural recovery, 
specifically differences in the rate of coniferous estab-
lishment, proportion of deciduous trees, and stem den-
sities. Our research builds on the connection between 
unique post-fire spectral responses and differences in 
structural recovery (Guz et al. 2022; Kiel and Turner 
2022; Smith-Tripp et  al. 2024b), but as structural 
groupings did not directly mirror those identified by 
Smith-Tripp et al. (2024b) our findings raise important 
considerations when implementing a space-for-time 
study using spectral trends.

There are similarities between our four structural 
recovery groups and recovery patterns and trends 
observed in other conifer forests (Littlefield 2019; 
Kiel and Turner 2022; Menick et  al. 2024). Addi-
tional forest structural data from lidar acquisitions 
supplemental to the dataset of Smith-Tripp et  al. 
(2024b) clarified trends and patterns of recovery. 
For example, Smith-Tripp (2024b) identified some 
areas with remaining residual canopy and delayed 
regrowth – but the sample size for these areas was 
low (25 pixels). Additional sampling (3,778 pixels) 
confirmed these areas, classed as regrowth delay, had 
high ground cover and stem densities five years post-
fire, which may be from residual canopy, as well as 
delayed regrowth. 8–12 years post-fire regrowth delay 
had relatively low stem densities and a high propor-
tion of bare ground 8–12  years post-fire, supporting 
slow conifer establishment. The slow conifer estab-
lishment rate of regrowth delay has been observed 
elsewhere in Western NA (Littlefield 2019; Menick 
et  al. 2024; Kiel et  al. 2025). All these studies sup-
port that new coniferous stems can take 10–20 years 
to establish and/or detect.

Interestingly, the group with the highest conifer 
stem density in the early post-fire (+ 5) years, was 
mixed growth. However, high stem densities in mixed 
growth could also reflect residual canopy– a response 
also noted by Smith-Tripp et al. (2024b). The loss of 
residual canopy (common in the first decade post-
fire; Bolton et  al. 2015; Frazier et  al. 2018) would 
also explain the drop in stem-density in years 8–9. 

Research in conifer forests often associates high-
severity fire with post-fire dominance of shrub or 
aspens (Lee 2004; Paudel and Markwith 2023), 
but we found burn severity was not indicative of a 
deciduous response. The group with the highest burn 
severity (conifer dominant mixed growth) had the 
highest proportion of deciduous cover in years 5–7 
(Table S2) but maintained a conifer dominant compo-
sition throughout the study period.

Future research in dry coniferous forests should 
be cautious to associate “fast” spectral recovery with 
deciduous recovery. In our research the group with 
the highest deciduous component, mixed growth, also 
had the highest spectral recovery for NBR. Yet NDVI 
spectral recovery rates were higher for regenerative 
conifer, which had the highest proportion of conifers 
and greatest stem density. Thus, in dry coniferous for-
ests, a faster spectral recovery rates for indices such 
as NBR or NDVI is not indicative of a greater decidu-
ous abundance. This conclusion aligns with findings 
of Celebrezze et al. (2024). They found areas of “fast” 
and “slow” spectral recovery (both NBR and NDVI) 
distinguished shrubs and conifers from grass but 
could not distinguish shrubs among conifers. Notably, 
we found “slow” spectral recovery rates were consist-
ently associated with regrowth delay, likely a result of 
a high proportion of bare ground in the early post-fire 
years. In conifer forests, spectral recovery rates are 
then best associated with a description of general veg-
etative recovery.

By including multiple spectral indices our spec-
tral groups successfully separated mixed growth 
responses from areas of regenerative conifer. Spectral 
recovery rates for mixed growth did not differ from 
rates for the regenerative conifer group based on a 
single index, but multiple indices improved separa-
tion. Past research in dry conifer forests has struggled 
to differentiate deciduous from conifers using spec-
tral data (Blanco-Rodríguez et  al. 2023). To address 
these difficulties, Blanco-Rodríguez et al. (2023) sug-
gest monitoring approaches that combine climate, 
site-level conditions, and spectral data. Importantly, 
integrating environmental conditions increases the 
accuracy of recovery monitoring from satellite data 
(Pérez-Cabello et al. 2021), but our approach relying 
on spectral data alone helps identify areas of similar 
structural recovery despite differences in environ-
mental conditions. For example, regrowth delay was 
predominant in cold-dry sites, but regrowth delay was 
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also located in areas that were normally wet and pro-
ductive (Fig.  6). Including environmental conditions 
in classification may fail to identify areas unexpected 
to have regrowth delay, such as normally wet and pro-
ductive regions. In all cases, it is important to validate 
spectrally identified recovery with field data because 
spectral responses, while useful to identify overall 
rates of vegetation growth, cannot universally distin-
guish shrubs and trees.

Our space-for-time approach lacks precision 
to compare group temporal trends. Consider the 
regrowth delay class, which had extremely high stem 
densities 15–16  years post-fire, and lower stem den-
sities in year 21. The drop in stem density between 
years 15 and 21 could signify the start of stem-exclu-
sion (Bartels et al. 2016), but it could also be a result 
of site differences not considered in our space-for-time 
approach. Fortunately, BC is currently conducting a 
province-wide lidar acquisition (White et  al. 2025). 
This acquisition will provide high-quality, spatially 
continuous lidar data, allowing future work to test how 
site-level differences influence recovery, such as the 
onset of stem exclusion. In addition to capitalizing on 
lidar data, future work should incorporate additional 
information on tree species composition and structure 
using remote sensing and/or field data (White et  al. 
2023). This information could clarify how observed 
structural recovery aligns or does not align with man-
agement goals and historic ecosystem composition 
(Johnstone et  al. 2016). For example, mixed growth 
responses may align with pre-fire composition (Jor-
gensen et  al. 2023) and/or historic deciduous forest 
composition altered by 20th-century forest manage-
ment (Brookes et al. 2021; Baron et al. 2022).

Structural group variability was associated 
with anomalous post‑fire climate

We found that structural recovery was best pre-
dicted by anomalous post-fire temperatures and 
precipitation, echoing research findings in conifer-
ous dry Western US forests (Table  S3, Young et  al. 
2019; Guz et  al. 2021). Prior research suggests that 
drought conditions, measured via climate moisture 
deficit (CMD), negatively impact coniferous recruit-
ment (Talucci et  al. 2019; Stevens-Rumann et  al. 
2022; Davis et  al. 2023). In our study, colder dry 
summers were more important than typical CMD. 

The decreased importance of CMD may be because 
lodgepole pine, the dominant conifer of the study 
area, is less impacted by drought than other conifers 
(Harvey et  al. 2016). Further, lodgepole pine estab-
lishment and growth can be limited at low tempera-
tures (Hansen and Turner 2019).

The positive association of a single particularly 
cold summer and the slow establishment rates of 
regrowth delay suggests lodgepole pine establish-
ment in sub-boreal may be temperature limited. 
The relationship between delayed lodgepole pine 
establishment and lower temperatures has also been 
found in subalpine environments in southern Colo-
rado (Guz et  al. 2021) and post-fire forests of the 
Greater Yellowstone ecosystem (Hansen and Turner 
2019). This delayed establishment was also noted in 
regions impacted by MBP in the mid-2000s (Dhar 
et  al. 2016a). In our study area, the average sum-
mer temperature from 1980 to 2010 was 12.7 ˚C, 
below the 14 ˚C threshold identified by Hansen and 
Turner (2019) as the temperature where lodgepole 
pine recruitment is limited more by temperature 
than moisture.

The two structural groups with a higher decidu-
ous proportion had different responses to extreme 
post-fire temperatures and precipitation (Fig. 6). For 
example, mixed growth was negatively impacted 
by dry summers and anomalously warm years. 
Conversely, conifer dominant mixed growth was 
positively associated with anomalously warm aver-
age annual temperatures. These differences could 
reflect the availability of underground resources, 
as resprouting deciduous species (both aspen 
and shrubs) can rely on surviving underground 
resources to buffer impacts of extreme climate 
(Young et  al. 2019; Johnstone et  al. 2020). Impor-
tantly, these unburned below-ground resources are 
inaccurately captured with satellite-estimated burn 
severity (Loboda et al. 2013). Satellite measures of 
burn severity characterize remaining above-ground 
vegetation post-fire (Miller and Thode 2007; Frol-
king et  al. 2009). To better understand the rela-
tionship between climate extremes and deciduous 
regeneration post-fire, recovery models should also 
consider the remaining soil organic material that 
facilitates post-fire deciduous resprouting (Shenoy 
et al. 2011), delays competing conifer establishment 
(Stark et al. 2006), and enables deciduous resprouts 
to endure climate extremes (Young et al. 2019).
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The association between lagged coniferous 
establishment and cold summers in our studies’ 
sub-boreal environment has important implica-
tions given observed and projected warming in BC 
(MacKenzie and Mahony 2021). While increas-
ing temperatures may decrease areas with delayed 
regrowth, drought conditions could accompany 
rising temperatures. Prolonged droughts can inde-
pendently cause regeneration lag (Guz et  al. 2021) 
or even coniferous regeneration failure (Stevens-
Rumann et  al. 2022). As multi-annual climate 
conditions have also been linked to differences in 
coniferous recovery (Kemp et al. 2019; Shuang and 
Christopher 2012), future research should consider 
the impact of prolonged (> 1  year) droughts and 
mean climate conditions multiple years post-fire.

Site‑specific conditions had a minimal impact 
on individual structural groupings

We found pre-fire basal area (BA) was the third most 
important driver across all structural groupings. This 
finding may reflect the similar pre-fire BA between 
regenerative conifer and conifer dominant mixed 
growth groups. Research in the boreal forest sup-
ported that greater pre-fire BA was associated with 
slower NBR recovery rates (White et  al. 2023). The 
authors found that areas that had not yet achieved 
spectral recovery (80% of the pre-fire NBR value) by 
the end of the time series had a higher pre-fire BA. 
However, in the study of White et  al. (2023) sites 
with a higher pre-fire BA also had a higher pre-fire 
NBR, meaning that sites required a greater magni-
tude of change to reach pre-fire NBR values. In our 
research, higher pre-fire BA were generally related 
to areas with greater rates of spectral recovery. Yet, 
we emphasize that our spectral recovery metric (rate 
of recovery) differs from the years-to-recovery met-
ric of White et  al. (2023). In our sub-boreal study 
region, productivity is soil nutrient-limited (DeLong 
et al. 2003). While we did not include soil nutrients in 
models, areas of high soil nutrient density may drive 
spatial clusters of high pre-fire BA. Thus, interactions 
among ecological drivers, such as pre-fire BA and 
soil nutrients, may cause differences in recovery driv-
ers across regions.

Contrary to recent research, we found a minimal 
impact of elevation on recovery trends. White et  al. 

(2023)  found a greater proportion of high elevations 
field plots had not yet spectrally recovered by the end of 
the time series (25 years post-fire). Similarly, Kiel and 
Turner (2022) found elevation had the largest impact 
on spectral recovery and stem densities 30 years post 
fire, followed by slope and distance-to-seed. However, 
Kiel and Turner (2022) did not consider post-fire cli-
mate conditions and White et al. (2023) did not directly 
test the impact of elevation against climate conditions. 
Thus, differences between our findings and those Kiel 
and Turner (2022) as well as White et al. (2023) sug-
gest that the importance of recovery drivers likely 
depends on which drivers are considered, how recov-
ery is defined, and which spectral metrics are used for 
recovery assessments. Additionally, Kiel and Turner 
(2022) measured recovery of a single fire year (1988). 
This suggests that recovery from a single fire year, 
which experiences the same after fire conditions, may 
be more driven by site-level differences such as eleva-
tion, but for fires that occur in different years, recovery 
may be more controlled by differences in post-fire cli-
mate conditions across years.

Post‑fire climate and the need for adaptive 
post‑fire management

The need for post-fire management actions is often 
based on assumed impacts of recovery drivers (North 
et  al. 2019). For example, Larson et  al. (2022) pro-
vide a post-fire planting framework that prioritizes 
planting in areas of high burn severity, unfavorable 
site composition, and projected harsh future climates. 
In their framework, harsh future climates are based 
on projected, rather than measured, climate condi-
tions (Larson et al. 2022). Given the link with conif-
erous establishment and measured post-fire climate 
observed in our research and elsewhere (Littlefield 
2019), we suggest post-fire management should adapt 
to measured post-fire climates.

Post-fire management must adapt to observed cli-
mate conditions to preserve key ecosystem services. 
For example, vegetation mitigates the risk of post-
fire landslide (Hope et al. 2015). In the context of our 
work, regrowth delay had the greatest amount of bare 
ground 8–9 years after fire. Regrowth delay was more 
likely in areas with particularly cold or dry summers, 
suggesting that cold and dry summers may promote a 
longer period of barren land. In some cases, planting 
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deciduous species would improve the rate of overall 
vegetation recovery, which promotes slope stability 
and decreases future fire risk (Wang et al. 2016).

Frameworks prioritizing post-fire management 
responses based on site conditions and projected cli-
mate, such as Larson et al. (2022), are crucial for forest 
management. However, given the importance of anoma-
lous post-fire climate found in our work and elsewhere 
in the literature (Stevens‐Rumann et  al. 2018; Davis 
et al. 2023), frameworks should be iterative, with an ini-
tial response developed immediately post-fire and later 
adaptation based on post-fire climate conditions. Swan-
son et al. (2023) argue that if post-fire climate conditions 
promote strong coniferous growth that results in dense 
young forest, then additional management intervention 
may be necessary to decrease fire risk. Our approach to 
quantifying recovery across the entire burned landscape, 
helps forest managers prioritize action areas, including 
regions with heavy post-fire fuel loads and/or barren 
landscapes prone to landslides (Larson et al. 2022; Lau 
2022; Swanson et al. 2023; Davis et al. 2024).

Conclusions

Using a combination of satellite and RPA lidar data, 
we found strong post-fire conifer recruitment across 
areas of BC’s sub-boreal forest that were burned by 
high severity wildfires. Additionally, we found that 
early (i.e., within 5  years’ post-fire) satellite-meas-
ured spectral recovery indicated forest groups with 
different patterns and rates of structural forest recov-
ery. Post-fire anomalous summertime climates and 
pre-fire BA best predicted these structural recovery 
groups. Specifically, abnormally cold and dry sum-
mers delayed conifer establishment, while warm 
years and/or higher pre-fire BA increased post-fire 
deciduous recruitment. Effective forest manage-
ment in a rapidly changing climate with intensi-
fied fire regimes requires an understanding of what 
drives post-fire forest recovery. To extend the use 
of the work presented herein, future research should 
investigate how longer-term climate conditions (e.g., 
drought conditions over multiple years) or better soil 
burn severity classification (which captures available 
below-ground resources) improve the detection of 
post-fire structural recovery. Ultimately, our structural 
recovery groupings and associated ecological drivers 

help forest managers prioritize action and non-action 
areas. Action areas include regions of regrowth delay, 
where barren landscapes could promote slope insta-
bility, while non-action areas, such as regions of coni-
fer-dominant mixed growth, restore the historic forest 
composition and mitigate future fire risk. Importantly, 
the likelihood of an action area, such as regrowth 
delay, is associated with post-fire climate extremes. 
Thus, monitoring and management should capture the 
initial fire event and adapt as conditions evolve during 
the crucial early recovery period.
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