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A B S T R A C T

Understanding species composition shifts in boreal mixedwoods forests is essential for anticipating forest suc
cession pathways under changing disturbance regimes. Species composition transitions in boreal forests reflect 
complex successional processes influenced by interactions between disturbance regimes, structural dynamics, 
and species traits. In this study, we integrated satellite-derived annual species composition data with airborne 
laser scanning (ALS) structural metrics, spatially explicit mortality estimates and disturbance history to inves
tigate composition transitions across ~288,000 ha of the Romeo Mallette Forest, Ontario. We focused on mid to 
late successional stages, identifying 27 species composition transitions and modeling their likelihood using 
extreme gradient boosting (XGBoost). From 2005 to 2018, 5% of the analyzed stands (~42,000 ha) predomi
nantly transitioned from hardwood to coniferous or mixed compositions. Transition probabilities were strongly 
associated with ALS-derived gap metrics, mortality rates, and cumulative years of spruce budworm and Forest 
Tent Caterpillar defoliation, while traditional site factors had limited predictive value. Notably, the number of 
years affected by spruce budworm defoliation significantly increased the likelihood of transition in stands 
dominated by more susceptible species. The results advance our understanding of mid-late succession pathways 
and support the integration of remote sensing time series into forest monitoring frameworks, improving in
ventory accuracy, and guiding adaptive management under evolving disturbance regimes.

1. Introduction

Timely and accurate information on forest attributes is essential for 
establishing forest monitoring and management plans. Airborne laser 
scanning (ALS) provides detailed and accurate measurement of forest 
attributes like forest height, canopy cover, canopy gaps, standing vol
ume and biomass with a high level of spatial detail and accuracy (Coops 
et al., 2021; White et al., 2017), making it increasingly valuable to 
develop Enhanced Forest Inventories (EFI) (Fassnacht et al., 2024; White 
et al., 2025). Complementary annual or sub-annual multispectral sat
ellite data allows to periodically update EFI attributes enabling to 
monitor the status and change of forest resources and forecasting future 
attributes associated with specific management actions or changing 
environmental conditions (Coops et al., 2023).

However, forest inventories require additional forest attributes not 

readily estimated from typical ALS systems, which utilize single wave
lengths and therefore have limited spectral differentiation on the return 
pulses. For example, species composition, which is used at the stand 
level to classify stands into different assemblages using estimations of 
species proportions by basal area, volume, canopy cover, or strata spe
cies occupancy (Little et al., 2024; Parton et al., 2006). Such assem
blages then facilitate the development of various modeling products, for 
instance, yield/growth curves, silvicultural intensity regimes, and suc
cession pathways, needed for forest management planning (Lennon 
et al., 2016; Penner and Pitt, 2019). As a result, manual interpretation of 
aerial imagery or the use of time-series of satellite imagery to generate 
species composition information often combined with climate and 
terrain information, is used to fill this important information gap.

When these datasets are combined, the level of spatial detail and 
accuracy can provide insights not only into the current structure and 
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composition of forest stands, but an also offer information from a variety 
of forest ecosystem processes. Forest succession, for example, represents 
changes in ecosystem functions, affecting wood supply, wildlife habitat 
provisioning, carbon storage, and other forest ecosystem services 
(Anyomi et al., 2022). Moreover, predicting stand forest succession 
remained a central challenge for scientists and foresters for over a cen
tury (Taylor et al., 2020); emerging different conceptual frameworks of 
vegetation succession, that for instance, hypothesized successional dy
namics as a deterministic process though influenced by stochastic fac
tors (Fenton and Bergeron, 2013; Taylor et al., 2020) or considering 
social and ecological interactions that operate at different spatial scales 
(Poorter et al., 2024). Following disturbance events, multiple succession 
pathways are possible depending on diverse mechanisms (Taylor and 
Chen, 2011) and complex interactions between the ecological properties 
of the regional species pool and the environmental conditions, distur
bance regimes, and silvicultural prescriptions (Anyomi et al., 2022; 
Bergeron et al., 2014).

Principally, our understanding of forest succession has been driven 
by the use of successive measurements from permanent sample plots 
(Lennon et al., 2016; Taylor et al., 2020; Zhu et al., 2025). However, 
achieving a balanced representation of different environmental condi
tions, species abundance, and possible transitions requires long-term 
remeasurements over broad areas that are not always logistically or 
financially possible. Alternatively, multispectral satellite time series 
now provide consistent, long-term information for mapping tree species 
and stand structures and it is increasingly being applied to study the 
long-term temporal trends in vegetation composition and disturbance 
dynamics over large areas (Bonannella et al., 2024; Fassnacht et al., 
2016; Hermosilla et al., 2024). Spatially detailed time series of species 
composition derived from remote sensing data facilitates the monitoring 
of changes in species over time and allows assessing the implications of 
changes on forest stability, management and ecosystem services 
(Wulder et al., 2024). Moreover, temporal consistency of species 
composition time series allows the analysis of the underlying process 
triggering composition shifts and successional dynamics (Gilić et al., 
2023; Hermosilla et al., 2024). Furthermore, remotely sensed estimates 
of species composition, canopy structure, and mortality rates provide 
measurable and repeatable signals of forest condition and stability. 
These indicators are sensitive to disturbance regimes and successional 
processes and can be updated consistently through satellite time series.

Tree mortality or damage from non-stand replacing disturbances 
caused by insect infestation, drought, windthrow, competition, or 
silvicultural interventions alter the vertical structure, creating condi
tions for recruiting trees to establish and for remaining trees to access 
available resources, leading to changes in tree species composition over 
time (Bergeron et al., 2014; Brassard and Chen, 2010). Species compo
sitional shifts at early and late stages might be driven primarily by tree 
growth and recruitment of individuals, while the relative contribution of 
mortality increases with the progression of ecological succession from 
middle to late stages (Nakadai and Suzuki, 2025). Thus, estimates of the 
standing basal area, volume, or biomass losses can provide insight into 
turnover; moreover, differences in mortality rates among species might 
also entail large differences in other ecosystem processes, such as species 
composition shifts and successional changes (Caspersen, 2004; Rees 
et al., 2001). In addition, interacting factors such as site conditions, 
species abundance, fire cycle, climate, and disturbances might result in a 
wide variation of forest composition changes (Anyomi et al., 2022).

In fact, recurrent eastern spruce budworm (Choristoneura fumiferana 
[Clem.]) and Forest tent caterpillar (Malacosoma disstria [Hbn.]) attacks 
are one of the main biological disturbances in Canada, producing 
annually moderate and severe tree defoliation events in Ontario since 
2000 (National Forestry Database, 2025). Overall, stands affected by 
spruce budworm or Forest tent caterpillar (FTC) defoliation show 
changes in forest dynamics by reductions in tree vigour and canopy 
openness that produce volumetric timber losses and understory 
recruitment, causing forest structural and compositional changes (Chen 

and Popadiouk, 2002). Stability of species community and resistance 
and resilience patterns to spruce budworm outbreaks might vary widely 
depending on the dominant species (Hennigar et al., 2008) and 
composition and structure of the system (Sánchez-Pinillos et al., 2019; 
Trotto et al., 2024). In the case of FTC, variability in outbreak severity 
and duration creates a range of canopy structures altering regeneration 
patterns that however differ between mixed and deciduous dominated 
stands (Moulinier et al., 2013).

In this study, we examined relationships between disturbance re
gimes and stand-level structure dynamics, specifically mortality as 
detected from ALS tree canopy gaps, with available spatially explicit 
coverages of annual tree species composition, derived from Landsat 
imagery (Hermosilla et al., 2024). Our goal was to test whether a 
combination of remotely sensed stand structural and mortality in
dicators, together with spatially localized insect infestation information, 
helps explain ecologically plausible compositional transitions under 
conditions where the effects of insect outbreaks are expected to be 
subtle. To do so, we ask the following questions: 

- What species transitions do we observe from annual species 
composition time series derived from Landsat imagery?

- Do the observed species transitions agree with the expected changes 
following successional transition rules in boreal environments?

- Do the different species composition changes relate to stand struc
ture, mortality rate estimates, disturbance regime and site 
conditions?

Once answered, we identify and map areas where changes in species 
composition at the stand-level are likely to occur. The results provide not 
only insights for forest managers working in these and similar forest 
types on some likely transitions underway in their forest stands, but also 
provide a new methodology where advanced remote sensing methods, 
using data which is free and open, can provide informed insights into 
species-level changes in boreal and mixed forests more broadly.

2. Methods

2.1. Study area

The Romeo Mallette Forest (RMF) is a managed forest located in 
northern Ontario, Canada, within the Boreal Shield Ecozone (Fig. 1). 
Covering approximately 630,000 ha, 86% of this area is productive 
forest land, primarily used for timber production and fiber procurement. 
Management activities in RMF are guided by the Forest Management 
Plan based on a 10-year cycle (currently 2019–2029) following Ontario's 
Crown Forest Sustainability Act, which is publicly available at http 
s://nrip.mnr.gov.on.ca/s/fmp-online?language=en_US. The managed 
productive forest land in RMF comprises 82% of regular production 
forest stands, 6% below regeneration status, 2% of protection forest, and 
10% classified as recent disturbed stands. The managed stands are 
dominated by tree species such as black spruce (Picea mariana (Mill.) 
BSP), jack pine (Pinus banksiana Lamb.), trembling aspen (Populus 
tremuloides Michx), white spruce (Picea glauca (Moench) Voss), and 
paper birch (Betula papyrifera Marshall). Of these tree species, black 
spruce is the most prevalent in RMF, dominating 50% of the forest stands 
while only 8% of stands lack any proportion of black spruce. Manage
ment activities are scheduled and projected in Standard Forest Units 
(SFU) defined from tree species composition (Table 1), managed under 
the same silvicultural system, with about 70% of the harvested wood 
volume anticipated to come from black spruce, jack pine, and poplar- 
dominated stands. SFU's aggregate forest stands for management pur
poses based on tree species composition, succession following natural 
disturbances or silvicultural treatments (Little et al., 2024; Parton et al., 
2006). Forest stands in the RMF are influenced by multiple disturbance 
agents, including wildfire, insect outbreaks, harvesting, and silvicultural 
activities. Resulting in diverse stand ages and development stages, with 
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considerable managed forest area (38%) in operable age classes 
(60–100). The terrain varies from flat and water-saturated in the north 
to moderately rolling and better drained in the south, with elevations 
between 280 and 450 m. The forest experiences long, cold winters and 
short, warm summers, with average temperatures ranging from 
− 16.8 ◦C to 17.5 ◦C.

2.2. Data

2.2.1. Species composition time series
We used the satellite-derived time series of the major dominant tree 

species of Canada's forested ecosystems developed by Hermosilla et al. 
(2024). The national-level annual tree species maps from 1984 to 2022 
were calibrated based on Canada's National Forest Inventory (Gillis 
et al., 2005) using regional Random Forest classification models. Species 
composition time series were generated using predictor variables 
derived from Landsat surface reflectance best-available-pixel image 
composites, combined with geographic, climate, phenological, and 
topographic data (Hermosilla et al., 2022). The annual dominant tree 
species classification presented by Hermosilla et al. (2024) showed an 
overall accuracy of 86.1% ± 0.14% (95% confidence interval), and 
predicted both the leading tree species as well as the likelihood of class 
membership to each of the targeted 37 species at 30 m resolution 
(Hermosilla et al., 2024). The membership likelihoods provide the 
confidence associated with the presence of tree species in addition to 
those classified as leading, allowing for defining the proportion of each 

species and assigning tree species assemblages at the stand level 
(Hermosilla et al., 2022; Sales et al., 2022; Wulder et al., 2024).

2.2.2. Forest resources inventory
A polygon-based Forest Resources Inventory (FRI) available for RMF 

was initially established with manual photo-interpretation of multi
spectral aerial imagery acquired in 2005. FRI polygons reflect infor
mation about tree cover, composition, successional stage, and 
silvicultural interventions. About 20% of the stands initially established 
were updated using new aerial photographs or field-based surveys 
regularly until 2014 to account for harvesting, natural depletion, silvi
cultural treatments, regeneration, or changes in stand development 
stages. Our analysis focused exclusively on polygons of productive 
forested type with a minimum area of 10,000 m2.

We extracted stand age and site conditions descriptors for each stand 
from the FRI attributes. Stand age was calculated for each stand using 
the origin year. FRI also included moisture regime (MR), nutrients 
regime (NR) and site class (SC) as indicators for site conditions. MR and 
NR are relative rankings of substrate moisture and nutrient supply 
throughout the growing season, estimated based on variations in 
texture, pore pattern, substrate depth, topographical position, and 
drainage (MNR, 2021). In order to simplify the interpretation of the 
results, we summarized the MR levels into four classes, i.e., dry, fresh, 
moist and wet; and the NR levels into three classes, poor, medium and 
rich. SC is considered a proxy of the site quality of the stands and is 
defined using species-specific height and age growth curves for the 

Fig. 1. Standard Forest Unit (SFU) classes in the Romeo Mallette Forest were defined from Landsat species composition maps with relative proportions of SFU in the 
study area. SFU's abbreviations in Table 1.
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dominant tree species (MNR, 2009). We removed stands with records of 
recent silviculture interventions, for instance, commercial thinning or 
spacing treatment. We also excluded stands with exposed bedrock or 
minimal soil depth, where forest regeneration and growth would be 
constrained due to poor growing conditions.

2.2.3. Mortality rate model
In the absence of stand-replacing disturbances (specifically wildfires 

and harvesting), tree mortality or damage from non-stand-replacing 
disturbances (mainly caused by insect infestation, drought, wind
throw, competition, or silvicultural interventions) leads to changes in 

Table 1 
Criteria of species proportion composition to assign Standard Forest Units (SFU) 
classes used in the RMF Forest Management Plan 2019–2029 (MNR, 2018).

Standard forest 
units (SFU)

Species proportion criteria Description

White and red 
pine (PRW)

Red pine ≥ 70 OR (White 
pine + Red pine + White 
spruce ≥ 40 AND White 
pine≥ 30) OR White pine +
Red pine ≥ 40

Stands are dominated by red 
pine or red pine-white pine 
mixture growing on a variety 
of soil types, from dry to moist 
sites and sandy to silty soils. 
Stands are an uncommon 
forest unit in the boreal 
northeast.

Tolerant-lowland 
Hardwood 
(OH1)

Black ash + White elm +
Balsam poplar ≥ 30 OR Black 
ash + Elm + Balsam poplar +
Sugar maple + Yellow birch 
+ Red maple ≥ 30

Stands containing primarily 
self-replacing, tolerant 
hardwood species on upland 
sites with sandy to coarse 
loamy soils of morainal origin.

Spruce bog 
(BOG)

Black spruce + American 
larch ≥ 70 AND White pine 
= 0

Stands are dominated by low- 
productivity black spruce and 
larch. Stands principally for 
biodiversity and wildlife 
habitat purposes related to 
sustainable forest 
management planning.

Black spruce 
(SB1)

Black spruce ≥ 70 AND 
(Sugar maple + Red maple +
Yellow birch + Red pine) 
=0 AND (Jack pine + White 
Pine) ≤10

Stands dominated by black 
spruce growing on wet, deep 
organic soils and on moist, 
peaty-phase mineral soils in 
lower slope positions. These 
stands can be of fire origin and 
will self-replace.

Jack pine 
(PJ1)

(Jack pine ≥ 70 AND 
(Trembling aspen +
Largetooth aspen + White 
birch + Silver maple` +
Black ash + Balsam poplar +
Red maple + Elm + Yellow 
birch) ≤20

Stands are dominated by jack 
pine growing on dry to fresh, 
sandy to coarse loamy soils of 
glaciofluvial origin. These 
stands are of fire origin. Stands 
120 years and older on dry 
sites where the pine 
component has declined to as 
low as 50% are still included 
in this SFU.

Lowland Conifer 
(LC1)

(Eastern white cedar +
American larch + Black 
spruce) ≥70 AND (Sugar 
maple + Red maple + Yellow 
birch + Red pine) =0 AND 
(White Pine + Jack pine) 
≤10

Mixed stands of black spruce, 
larch, and (or) eastern white- 
cedar occupy wet, moderately 
deep organic soils associated 
with drainage ways or the toe 
of slopes where telluric water 
augments the on-site nutrient 
pool. These stands rarely burn 
and will self-replace. This SFU 
can also include stands with 
white birch on organic soils.

Pine-Spruce 
(PJ2)

((Jack pine + Black spruce +
Red pine) ≥70 OR (Jack 
pine≥ 50 AND (Jack pine +
Black spruce + Balsam fir +
White spruce + Eastern 
hemlock + White Pine + Red 
pine + Eastern white cedar +
American larch) ≥70)) AND 
(Jack Pine ≥ Black Spruce)

Mixed stands of jack pine and 
black spruce growing on dry to 
moist, sandy to coarse loamy 
soils of glaciofluvial origin. 
These stands are of fire origin 
or will develop with time from 
PJ1. Jack pine stands with an 
important balsam fir 
component are included in 
this SFU.

Spruce-Pine 
(SP1)

(Black spruce + White spruce 
+ Balsam fir + Eastern white 
cedar + American larch +
White pine + Jack pine +
Red pine + Eastern 
hemlock) ≥70 AND ((Balsam 
Fir + Eastern white cedar +
White pine + American larch 
+ White spruce + Eastern 
hemlock) ≤20 OR (Jack 
Pine) ≥30)

Stands are upland black 
spruce-dominated conifer 
stands on fresh to moist 
mineral soils of all textures. 
They can include almost pure 
black spruce stands with very 
little or no jack pine. These 
stands are of fire origin or will 
develop through succession 
from other forest types.

Spruce-Fir 
(SF1)

(Black spruce + White spruce 
+ Balsam fir + Eastern white 
cedar + American larch +

Mixed conifer stands of white 
spruce, balsam fir, black 
spruce, and eastern white  

Table 1 (continued )

Standard forest 
units (SFU) 

Species proportion criteria Description

White pine + Jack pine +
Red pine) ≥70

cedar growing on fresh to 
moist mineral soils of all 
textures. This SFU develops 
primarily from succession and 
rarely from fire origin. Highly 
productive stands are often 
found on lower slope positions 
associated with telluric 
seepage.

Poplar 
(PO1)

(Trembling aspen + Balsam 
poplar + White birch +
Sugar maple + Black ash +
Red maple + Yellow birch +
Elm) ≥70 AND (Trembling 
aspen + Largetooth aspen +
Balsam poplar) ≥50

Hardwood stands dominated 
by trembling aspen. They 
typically occur on fresh to 
moist, loamy to clayey soils. 
These stands are primarily of 
fire origin.

Birch-Poplar 
(BW1)

(Trembling aspen +
Largetooth aspen + Balsam 
poplar + White birch +
Sugar maple + Black ash +
Red maple + Yellow birch +
Elm) ≥70

Hardwood stands dominated 
by white birch. They occupy 
some of the same sites that PO 
stands occupy, as well as 
somewhat drier and coarser- 
textured soils. They can be of 
fire origin or develop through 
succession from other forest 
conditions.

Mixedwoods 
(MW1)

(Jack pine + Red Pine) ≥20 
OR (Balsam fir ≤20 AND 
White spruce ≤20 AND 
Eastern white cedar ≤20)

Mixed conifer-deciduous 
stands comprising trembling 
aspen, white birch, jack pine, 
and black and white spruce. 
They occur on dry to moist, 
sandy to coarse loamy soils. 
These stands can be fire origin 
or develop through 
succession. Stands that have 
undergone succession may 
lack jack pine but will have 
<20% late successional 
species such as balsam fir, 
white spruce, and eastern 
white-cedar in the canopy.

Mixed Hardwood 
(MH2)

(Trembling aspen +
Largetooth aspen + White 
birch + Sugar maple +
Yellow birch + Red maple +
Black ash + Elm + Balsam 
poplar) ≥50

Stands are mixed conifer- 
deciduous, comprising largely 
trembling aspen, white birch 
(>50%). Black and white 
spruce, balsam fir, or eastern 
white-cedar represent less 
than 50%. They occupy fresh 
to moist, medium loamy to 
clayey soils. These stands most 
often develop through 
succession from other SFUs.

Mixed Conifers 
(MC2)

(Black spruce + White spruce 
+ Balsam fir + Eastern white 
cedar + American larch +
White pine + Jack pine +
Red pine) >50 AND all 
remaining stands.

Mixed conifer stands 
comprising largely black and 
white spruce, balsam fir, and 
eastern white-cedar. They 
occupy fresh to moist, medium 
loamy to clayey soils. These 
stands most often develop 
through succession from other 
SFUs
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forest structure and tree species composition over time (Bergeron et al., 
2014; Brassard and Chen, 2010). Tree mortality from non-stand- 
replacing disturbances creates canopy gaps and changes in the vertical 
structure of the stand (McCarthy, 2001; Yamamoto, 2000). Riofrío et al. 
(2025) demonstrated that ALS data can be used to estimate stand-level 
mortality over large areas through the characterization of canopy 
gaps, vertical and horizontal structural complexity.

In this study we used the mortality rate model developed by Riofrío 
et al. (2025) that provides spatially explicit estimates of mortality 
probability and mortality rates at 20 m resolution across forest types and 
structural attributes over the RMF. The model relies on data from 
repeated measurements of permanent sample plots and ALS point cloud 
data and requires stand-level factors, such as stand age and species 
composition and ALS-derived metrics related to canopy structure and 
canopy gaps as predictors. The model was calibrated using mortality 
rate observations of permanent sample plots, showing a RMSE of 0.0107 
and model efficiency of 0.373 and revealed the spatial variation of the 
expected mortality rates across boreal mixedwood forests.

There are three key considerations regarding the mortality model 
application in our analysis. First, the model was designed to inform 
stand-level mortality rates attributable to non-stand-replacing distur
bances. The model was fit considering only permanent sample plots with 
a mortality rate lower than 0.1, avoiding mortality events that might be 
triggered by stand-replacing disturbances. Second, the model estimates 
the proportion of basal area loss (mortality rate) between concurrent 
plot measurements. Basal area loss may be a better indicator of distur
bance severity (Hart and Kleinman, 2018) for compositional shifts at 
middle to late stand development stages (Nakadai and Suzuki, 2025), 
because after the stem exclusion phase, as the stand matures, composi
tional shifts based on dominance (i.e., basal area) are mainly influenced 
by the mortality of large trees rather than recruitment (Nakadai and 
Suzuki, 2025). Finally, because the mortality rate model was calibrated 
using plot measurements between 2004 and 2020, the target period in 
this study was selected to match the interval of the mortality rate pre
dictions. During this period, we calculated the mean (MorR_mean) and 
standard deviation (MorR_sd) mortality rate for each stand selected in 
the analysis.

2.2.4. ALS-derived variables
ALS data was acquired in June–July 2018 under leaf-on conditions 

using a Leica SPL100 single photon LiDAR (SPL) sensor operating at a 
green wavelength (λ = 532 nm). The SPL system emitted pulses in a 10 
× 10 beamlet array and was flown at an average altitude of 3800 m 
above ground level with a nominal speed of 350 km/h along parallel 
flight lines with 50% overlap. Data acquisition adhered to the Ontario 
Specification for LiDAR Acquisition (MNR, 2016), yielding a vertical 
accuracy class of 2.6 cm and a reported vertical RMSE of 5.1 cm. Post- 
processing by the data provider included noise filtering, georeferenc
ing, and classification based on (Gluckman, 2016), resulting in an 
average point cloud density of 40 points/m2. Point clouds were 
normalized to above-ground height using a triangulated irregular 
network of ground returns.

Normalized ALS data was used to derive vegetation structure metrics 
on a 30 × 30 m grid aligned with the Landsat-based species composition 
time-series. ALS data processing was conducted using the lidR R package 
(Roussel et al., 2020). The 99th percentile height of first returns (p99) 
was calculated, likewise the mean (p99_mean) and standard deviation 
(p99_sd) of p99 were computed by each delineated polygon (i.e., stand) 
included in the analysis. Canopy gaps were identified from a 0.5 m 
resolution canopy height model (CHM) generated using the pit-free al
gorithm (Khosravipour et al., 2014). Gaps were delineated using the 
ForestGapR package (Silva et al., 2019) with a fixed height threshold of 
<3 m, following established thresholds for boreal and temperate forests 
in Canada (Goodbody et al., 2020; White et al., 2018). Only contiguous 
gaps between 4 m2 and 10,000 m2 were retained. To exclude anthro
pogenic disturbances such as forestry roads, gaps were filtered using a 

shape index (Patton, 1975), calculated as 
(

p/(2 × π × a)0.5
)

, where p is 

perimeter and a is area of a given gap. Gaps with a shape index >3 and 
area > 100 m2 were excluded to remove long, narrow, likely non- 
regenerating gaps. Finally, the proportional gap area (GapProp) by 
stand was also computed from the delineated canopy gaps.

2.2.5. Disturbances caused by insect damage events
Data on non-stand-replacing disturbances due to insect damage were 

gathered from the available disturbance layers produced by the Ontario 
Ministry of Natural Resources (MNR). Mapped events of forest insect 
damaging trees by defoliation, foliage mining and wood boring are 
produced on an annual basis, providing georeferenced layers publicly 
available online (https://geohub.lio.gov.on.ca/) (MNR, 2024). We 
calculated the cumulative number of years of moderate to severe defo
liation or insect damage events between 2000 and 2020, computed at 
30x30m resolution for the main insect outbreaks: eastern spruce bud
worm (Choristoneura fumiferana [Clem.]) and Forest Tent Caterpillar 
(Malacosoma disstria [Hbn.]). Fig. 2 indicates a relatively mild outbreak 
of spruce budworm in the north of RMF, and only 1–3 years of defoli
ation in the south. Similarly for FTC, there was some lengthy defoliation 
on the far eastern edge of the RMF.

Given the limited and spatially variable spruce budworm and Forest 
Tent Caterpillar activity during 2000–2020, we anticipated that any 
insect-driven signals would be subtle. Our goal was therefore not to 
detect major outbreak impacts—which are unlikely in this context—but 
to test whether remotely sensed indicators from stand structural and 
mortality estimates together with subtle insect-related effects help 
explain ecologically meaningful species compositional transitions.

2.3. Analysis approach

2.3.1. Building species composition transitions
In this study, we use class membership likelihood ranks derived from 

the Random Forest tree species classification (Hermosilla et al., 2024) to 
assign standard forest units (SFU) at the stand-level (i.e., delineated 
polygons available in the FRI). We calculated the relative frequency of 
the class membership likelihood values from the species present in each 
stand by averaging the class membership probability estimates of each 
class over all pixels (Sales et al., 2022; Wulder et al., 2024). We included 
only species with a relative presence in the stand greater than 2.5%. 
Additionally, to prevent the noise from random probability assignments 
in the classification algorithm and to ensure that tree species with low 
probabilities were not included, pixels with class membership likelihood 
values of ≤ 5% were excluded (Wulder et al., 2024). Then, class mem
bership percentages by species were used to assign each polygon to SFU 
following the classification system implemented in the forest manage
ment plan for the Romeo Malette Forest (MNR, 2018). This classification 
system uses a modified version of the classification criteria from Parton 
et al. (2006). Table 1 depicts the SFU definition based on species 
composition proportion. SFUs in Table 1 are ordered according to the 
classification criteria algorithm (Little et al., 2024; MNR, 2018).

From the total available stand inventory data (43,806 productive 
forest stands), we selected 28,493 stands covering 287,975 ha that fit the 
criteria as follows (Fig. 1). First, as we are interested in changes in 
species composition due to non-stand-replacing disturbances in stands at 
middle to late development stages, stands younger than 30 years were 
excluded to remove early stand succession pathways following stand- 
replacing disturbances (i.e., harvesting). In addition, because some 
SFU successional transitions are unlikely to occur in the absence of 
stand-replacing disturbances or they are too rare, we only considered the 
SFU empirical succession rules implemented in the current forest man
agement plan of the study area (Lennon et al., 2016). Thus, only possible 
SFU changes (Fig. 3) were included in the analysis to reduce the un
necessary dimensions of the SFU transitions in the classification model. 
Our analysis was focused on the SFU transitions between 2005 and 2018 

J. Riofrío et al.                                                                                                                                                                                                                                  Ecological Indicators 183 (2026) 114659 

5 

https://geohub.lio.gov.on.ca/


to match the calibration period of the mortality rate model. Finally, to 
improve the consistency and reduce the uncertainty of the likelihood of 
species class membership from the model, we selected stands that 
maintained the same SFU class four years before or after the analysis 
period (2005–2018). Finally, we check the Landsat-derived SFU classi
fication to the corresponding FRI photo-interpreted SFUs matching each 
stand to the year in which it was last updated in the FRI (Fig. S1).

2.3.2. Modeling species composition transitions
In order to determine whether species composition transitions were 

predictable from a set of explanatory variables (Table 2), we used the 
extreme gradient boosting algorithm (XGBoost) (Chen and Guestrin, 
2016). XGBoost is a scalable machine learning method for tree boosting 
regression and classification based on an iterative process that improves 
model performance by adding trees to reduce a loss function (Friedman, 
2001; Natekin and Knoll, 2013). This machine learning approach can 

Fig. 2. Total number of years of moderate-to-severe defoliation, 2000–2020, in the RMF during the most recent eastern spruce budworm and Forest Tent Caterpillar 
outbreaks, data source MNR (2024).

Fig. 3. Standard Forest Units (SFU) transitions between 2005 and 2018, solid grey dots are the number stand transitioning SFU class while orange are stand that 
reminded stable. The X axis shows the number of stands by SFU transition. SFU's abbreviations in Table 1.
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accommodate diverse data distributions and deal with non-normality 
and heteroscedasticity, common issues in ecological data. Tree boost
ing regression analysis is suitable for handling complex, nonlinear re
lationships, including interactions in ecological data and has been used 
to model multiple succession pathways following disturbances in stands 
at different development stages (Liu and Yang, 2014; Taylor et al., 2020; 
Vidal-Macua et al., 2017).

We fit independent models for each initial SFU class. XGBoost models 
were fitted using the SFU's transition classes identified from the satellite- 
derived species composition as a categorical response variable. We used 
a Bernoulli or multinomial response distributions for SFU with two or 
more than two SFU transition classes, respectively. To ensure unbiased 
model performance estimates, the data was split into 70% training and 
30% test sets, with hyperparameter tuning conducted via 10-fold cross- 
validation on the training set and “mlogloss” as the evaluation metric for 
hyperparameter combinations in each model construction. Given the 
large number of possible combinations of hyperparameters in the 
XGBoost model, we use the learning curve combined with the Grid
Search method for model tuning to determine the optimal combination 
of hyperparameters, including eta (0.1–1), max.depth (2–6), subsample 
(0.1–1), bytrees (0.4–1), nrounds (50–200), and learning_rate (0.01–1). 
Optimal settings were based on changes in Area Under the Curve (AUC) 
from cross-validation, with a change >0.1 considered significant (Ferri 
et al., 2009). In addition, because all the SFU change classes are not 
equally represented across the training data (Fig. 3), this is expected to 
result in poorer model performance for rarer SFU transition classes and 
better performance for more common ones. We balanced the samples in 
each SFU change class by reducing the number of samples in the larger 
classes (downsampling).

XGBoost models were developed in R using the ‘caret’ package 
(Kuhn, 2015) for hyperparameter tuning and the xgboost package (Chen 
and Guestrin, 2016) for model fitting. Model interpretation involved 
examining the relative influence of variables and plotting partial de
pendency plots (PDPs) (Greenwell et al., 2019). Variable relative 
importance was scaled between 1 and 100 (the most important 
explanatory variable) and calculated based on the number of times a 
predictor was selected for splitting an individual tree and the 

improvement to the model as a result of each split (Friedman and 
Meulman, 2003; Hastie et al., 2009). We also calculated the variable 
importance separately for each SFU change class of the multinomial 
models by summing model improvement at each split for each variable 
and class (Hastie et al., 2009; Taylor et al., 2020). Thus, we were able to 
assess which variables contributed the most to each SFU change class as 
well as to the overall models. PDPs illustrate the marginal effects of one 
predictor variable over the response outcome while other variables are 
kept constant. PDPs provide a useful basis for interpretation, accounting 
for interactions, and capturing the non-linear, non-monotonic relation
ships between variables and response probabilities (Greenwell, 2017). 
We only showed partial dependency plots for the five variables that 
contributed the most in each overall SFU model according to their scaled 
relative influence.

Finally, the accuracy of the models for each SFU and SFU transition 
class was evaluated using the test dataset. We calculated the overall 
accuracy (OA) and No Information Rate (NIR) across all SFU models. 
The OA is a global measure of accuracy that indicates the proportion of 
observations that were correctly classified. The NIR is the proportion of 
stands correctly classified in the largest SFU change class, indicating the 
accuracy of the model if only the largest class is predicted. In addition, 
we calculated the recall (producer's accuracy – PA), precision (user's 
accuracy - UA), and the F-score for each SFU change class. PA represents 
the proportion of correctly identified SFU change classes to all the 
possible transition pathways, while UA measures the proportion of 
correctly identified SFU classes among the predicted SFU change classes. 
The F-score combines recall and precision, providing a balanced metric 
that penalizes discrepancies between recall and precision and ensures 
robust performance evaluation.

3. Results

The satellite-derived species composition layers allowed to identify 
27 different composition transitions in stands at middle to late devel
opment stages, ranging from 2 to 4 different classes by initial SFU. 
Regardless of the stands that maintained the same species composition, 
the most common transition was MH2-MC2 (Hardwoods leading stands 
to conifer mixedwoods), representing 14% of the total stands analyzed, 
followed by SF1-SP1 (spruce-fir to spruce-pine dominant stands) at 4%. 
On the other hand, the less represented (< 30 stands) composition 
transitions in the dataset were SF1-MC2 (18 stands) and MH2-BW1 (16 
stands) (Fig. 3).

3.1. XGBoosted regression tree performance

The accuracy of the models over the test data for each SFU is pre
sented in Table 3. Models yielded OAs ranging from the lowest 0.37 for 
SFU transitioning from mixed hardwoods (MH2) to the highest of 0.83 
for jack pine-dominated stands (PJ1), indicating a moderate perfor
mance for all the models. Most of the models showed a greater NIR in 
comparison to OA, except the model for poplar-birch stands (BW1). 
Furthermore, we also evaluated the performance of each SFU transition 
class using the recall, precision and F-score indicators (Table 3). The 
models with only two possible SFU changes showed better performance 
in comparison to the multinomial models (i.e., more than 2 possible SFU 
transitions), showing recall and precision values greater than 0.4. When 
multiple SFU transition pathways were modeled, the ability of the 
models to predict the correct class decreased as the model complexity 
increased. We also note that the less represented SFU change classes in 
the testing data to evaluate multinomial models showed the lower F- 
score values, for instance, the transitions SF1-MC2 and MH2-BW1.

3.2. Relative importance of variables

The overall scaled variable importance from each SFU model is 
presented in Fig. 4. The best-ranked variables in relative importance 

Table 2 
Description of explanatory variables used in the XGBoost species composition 
transitions models.

Variable Description Unit Range (mean)

AGE Stand age Continuous (yr) 43–200 (85)
MRs Moisture regime Ordinal dry, fresh, 

moist, wet
NR Nutrients regime Ordinal rich, medium, 

poor
Site_class site class indicator Ordinal best, better, 

good, poor, 
very poor

MorR_mean Mean stand mortality rate Continuous 
(proportion 
yr− 1)

0–0.05 (0.07)

MorR_sd Standard deviation of 
mortality rate within the 
stand

Continuous 
(proportion 
yr− 1)

0–0.02 (0.004)

GapProp Gap proportion area of the 
stand

Continuous 
(proportion)

0–0.2 (0.06)

p99_mean Mean stand height Continuous (m) 6.5–27.9 (18.1)
p99_sd Standard deviation of height 

within the stand
Continuous (m) 0.7–9.3 (2.7)

SpBud_max Total number of years of 
moderate-to-severe 
defoliation due to spruce 
budworm

Continuous (yr) 0–4 (0.2)

Tent_max Total number of years of 
moderate-to-severe 
defoliation due to tent 
caterpillar

Continuous (yr) 0–8 (0.5)
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values varied across all models. However, the most common variables 
showing the higher variable importance were the stand proportion of 
gap area (GapProp), mean (p99_mean) and standard deviation (p99_sd) 
of stand height, the mean (MorR_mean) and standard deviation 
(MorR_sd) of mortality rate of the stand and the number of years with 
defoliation events by spruce budworm (SpBud_max). Overall, the 
models depicted two to five variables with scaled importance values 
greater than 50%. One single variable showed considerably higher 
importance values than the other predictor variables (<25%) only in the 
models for lowland conifer (LC1) and jack pine stands (PJ1). It is worth 
noting that, stand age and site condition variables (MRs, NR and Site 
class) ranked low overall.

In the five SFU transition models predicting a multinomial response 
(MC2, MH2, MW1, SF1 and SP1), in addition to the overall variable 
influence, we calculated separately the scaled variable influence for the 
multiple pathways of species composition change (Fig. S2). We found 
that for some models, the importance values for the most relevant var
iables (>50%) changed among the different SFU transitions despite the 
same variables being ranked in the top five positions. For instance, the 
SFU transition models for mixed conifer stands (MC2) and spruce-fir 
(SF1) stands are mainly influenced by gap proportion, mortality rate 
and stand height. Conversely, the overall ranking for the transition 
models for mixed hardwoods and mixedwoods varied widely among 
some SFU transition classes. This is true for the transitions MH2-MC2 
and MW1-MH2, where the most important variable in the overall 

ranking had a markedly lower importance. The relative importance of 
the variables related to site conditions (nutrient -NR and moisture-MR 
regime) remained lower than 20% for most SFU change classes.

3.3. Mapping the probability of species composition change

Mapping the probability of species composition change at the stand 
level was produced by the composite of the SFU XGBoost models 
(Fig. 5). Overall, the models predicted that 5% (3538 stands covering 
~42,000 ha) of the selected stands are likely to change species 
composition between 2005 and 2018. The proportional area predicted 
to show some transition varied among SFU classes; the greater relative 
proportion of stands changing class was for stands initially classified as 
mixed conifers (71%) and mixed hardwoods (69%), and the lowest for 
birch-poplar dominated stands (1%) (Fig. S3). Although stands showing 
a higher probability of species composition change were scattered 
throughout the RMF, mixed conifer and hardwood stands showing 
species changes were predominantly located in the southern area of the 
RMF (inset B, Fig. 5). In the central and northern areas, mostly stands 
dominated by black spruce, fir and pine species were less prone to 
species composition changes (inset A, Fig. 5).

3.4. Explanatory variables for SFU transitions

In order to synthesize the results, Appendix 1 (Figs. S4 to S8) displays 
the partial dependence plots (PDP) for the five most important variables 
in each SFU model. In addition, to facilitate the comparison of the 
relationship between the SFU change classes and explanatory variables, 
the SFUs were grouped into 4 sets according to the dominant species. 
Thus, black spruce dominant stands (Fig. S4), jack pine dominant stands 
(Fig. S5), spruce-fir-pine codominant stands (Fig. S6), conifer and 
hardwood mixedwood stands (Fig. S7), and deciduous dominated stands 
(Fig. S8). In general, models with only two possible transition pathways 
showed clearer threshold values across variables distinguishing the 
probability transitions than the multinomial response transition models. 
However, even in a more complex model with multiple SFU change 
pathways, variables like mortality rate and canopy height showed 
marked tipping points defining the probability of SFU transitioning from 
one class to another; therefore, we emphasize the role of these variables 
when types of transitions are compared.

As shown in Fig. 6, partial dependence plots demonstrate the influ
ence of spruce budworm defoliation outbreaks on the likelihood of SFU 
transition pathways, revealing that the probability of transitioning from 
spruce-fir (SF1) or mixedwoods (MW1) to spruce-pine (SP1) increases 
notably after repeated defoliation events. The effect is particularly 
pronounced beyond a threshold of 2–3 years of cumulative defoliation, 
supporting the idea that repeated insect disturbances are a major driver 
of compositional change in susceptible forest types. Forest tent cater
pillar (FTC) activity was more temporally persistent (4–7 years) and 
spatially concentrated in the eastern RMF than the mild and short (1–3 
years) spruce budworm defoliation observed during 2000–2020 (Fig. 2). 
The partial dependence curve for FTC shows a less intense and non- 
linear effect in transition probability at higher defoliation intensities 
for trembling aspen dominated stands (PO1).

4. Discussion

Information on how species assemblages are changing over time can 
be difficult to attain on a spatially explicit basis. The recent availability 
of high-quality time series of surface reflectance information derived 
from satellite remote sensing is providing a previously unavailable 
source of information which can be used to derive tree species infor
mation over space and time (Hermosilla et al., 2024). The availability of 
annual dominant species spatial estimates across Canada has enabled 
the analysis of successional dynamics to be undertaken and demon
strates the capacity of how these types of datasets can be used when they 

Table 3 
Performance diagnostics of XGBoost models over test data for each SFU class.

SFU OA NIR SFU 
transition

Recall 
(PA)

Precision 
(UA)

F-score

BW1 0.67 0.58 BW1-BW1 0.40 0.67 0.50
​ ​ ​ BW1-MH2 0.86 0.67 0.75

LC1 0.72 0.88 LC1-LC1 0.74 0.94 0.83
​ ​ ​ LC1-SB1 0.66 0.26 0.37

MC2 0.42 0.42 MC2-MC2 0.42 0.55 0.47
​ ​ ​ MC2-MH2 0.26 0.18 0.21
​ ​ ​ MC2-SF1 0.14 0.16 0.15
​ ​ ​ MC2-SP1 0.87 0.70 0.78

MH2 0.37 0.56 MH2-MH2 0.33 0.62 0.43
​ ​ ​ MH2-BW1 0.25 0.01 0.02
​ ​ ​ MH2-MC2 0.40 0.42 0.41
​ ​ ​ MH2-SF1 0.47 0.17 0.25

MW1 0.44 0.70 MW1-MW1 0.46 0.79 0.58
​ ​ ​ MW1-MH2 0.60 0.06 0.11
​ ​ ​ MW1-SF1 0.29 0.19 0.23
​ ​ ​ MW1-SP1 0.60 0.39 0.48

PJ1 0.83 0.81 PJ1-PJ1 0.88 0.92 0.90
​ ​ ​ PJ1-PJ2 0.67 0.57 0.61

PO1 0.44 0.85 PO1-PO1 0.80 0.18 0.29
​ ​ ​ PO1-MH2 0.38 0.92 0.57

SB1 0.66 0.87 SB1-SB1 0.63 0.97 0.76
​ ​ ​ SB1-LC1 0.86 0.26 0.40

SF1 0.47 0.65 SF1-SF1 0.26 0.37 0.31
​ ​ ​ SF1-MC2 0.67 0.07 0.13
​ ​ ​ SF1-SP1 0.56 0.87 0.68

SP1 0.60 0.81 SP1-SP1 0.59 0.87 0.70
​ ​ ​ SP1-SF1 0.61 0.26 0.36

OA: overall accuracy, NIR: no information rate. SFU's abbreviations in Table 1.
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made available. We acknowledge, however, that the satellite data record 
is relatively short compared to tree species successional pathways, with 
satellite data only available since the mid-1970s. As a result, we are only 
able to observe relatively subtle changes in species composition over this 
40–50-year time window. Obviously, mortality and succession timelines 
are significantly longer (Taylor and Chen, 2011; Zhu et al., 2025) than 
the relatively short period of time in our analysis, which corresponds to 
the years for which morality estimates and derived ALS-structural at
tributes are consistently available.

The relatively short period explains why stand age was ranked 
among the less important variables in the succession models. This result 
agrees with Zhu et al. (2025), the authors demonstrated that stand age is 
a weak predictor of species compositional changes using repeated 
standard forest mensuration data. As indicated throughout this analysis, 
the age of the stand is derived from photographic interpretation un
dertaken by expert interpreters within the province of Ontario. Age is a 
common photo-interpreted attribute that we commonly see in forest 
resource inventories. However, forest age is often extremely difficult to 
estimate from either aerial or satellite imagery looking down. This has 
two implications for the analysis. First, given that we did utilize these 
photo-interpreted estimates of age, there are likely to be significant 
amounts of error, which are generally unknown, which makes it difficult 
to quantify the error associated with this analysis with respect to this 
attribute. Work is underway, for example, by Maltman et al. (2023) to 
estimate stand age from a combination of remote sensing data sets and 
ALS. However, these estimates carry errors simply due to our inability to 
derive age information solely from observations of canopy characteris
tics. As a result of all of the attributes utilized in this analysis, age is the 

one that is likely to carry the most significant error.
Succession dynamics in mid to late forest stages are the result of 

abiotic and biotic factors acting independently or interactively (Anyomi 
et al., 2022; Taylor and Chen, 2011). However, our analysis clearly 
demonstrates that there are key suite indicators that are useful for pre
dicting species changes over time and space. Anyomi et al. (2022)
described that boreal forests in Ontario exhibit long periods of compo
sitional stability driven by strong successional inertia, punctuated by 
disturbance-induced pulses of change. Our findings align with these 
inertia-dominated successional dynamics, showing an overall low 
transition rate (~5%) but with identifiable transitions associated with 
mortality rates, structural attributes and insect activity. In this context, 
remotely sensed indicators function as early-warning indicators of 
emerging compositional shifts. Recent large-scale empirical analyses 
have shown that boreal successional transitions are highly nonlinear and 
driven by multiple interacting processes operating at different temporal 
and spatial scales, including species dominance, stand structure, gap 
dynamics, and disturbance history. For example, Zhu et al. (2025) used 
boosted regression trees and structural equation modeling across >3000 
permanent plots and found that successional transitions occur with low 
probability (~4–5% per census interval) and are primarily driven by 
within-community dynamics such as species dominance and de
mographic structure rather than by any single external driver.

Although ALS data were available for a single acquisition year 
(2018), we interpret ALS-derived canopy structure as an integrated 
representation of cumulative stand development and gap legacy 
resulting from background mortality, competition, and non-stand- 
replacing disturbances. This framing is supported by recent work 

Fig. 4. Scaled variable importance in the final XGBoost models for each SFU. Refer to Table 1 for SFU class and Table 2 for all variable abbreviations.
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showing that canopy gap and structural attributes derived from ALS are 
related to time-averaged mortality rates and their spatial variability in 
boreal forests (Riofrío et al., 2025). In addition, Ma et al. (2023)
demonstrated that tree mortality during multi-year droughts is 

regulated by tree height and neighborhood canopy structure, with 
higher structural complexity reducing mortality via shading and lower 
evaporative demand. Accordingly, ALS predictors in this study are used 
to characterize the structural context within which species-composition 
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Fig. 5. Probability of species composition change at the stand level between 2005 and 2018 in the Romeo Mallette Forest area. Inset highlights the variation of the 
probability of species composition change at a finer spatial scale. SFU's abbreviations in Table 1.

Fig. 6. Partial dependency plots showing the influence of the total number of years with defoliation events due to spruce budworm (SpBud_max) and Forest Tent 
Caterpillar (Tent_max) outbreaks on the probability of SFU transition classes. SFU's abbreviations in Table 1.
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transitions occurred, rather than to infer the precise timing of individual 
disturbance events. We acknowledge that repeated ALS acquisitions 
would improve detection of the timing and magnitude of structural 
change associated with specific disturbance events, representing an 
important direction for future monitoring. For instance, Trotto et al. 
(2024) demonstrated that the impact of repeated non-stand-replacing 
disturbances can manifest as structural changes detectable through 
ALS metrics such as canopy cover and height percentiles.

One of the critical variables that is often dominant in the variable 
importance is the gap area of the stand (derived from ALS data) and 
estimates of stand mortality rate (i.e., relative basal area loss). Analysis 
of gaps from ALS data is a well-established technique and one that is 
being utilized globally to better understand disturbance characteristics 
and growth patterns in forests worldwide (Jucker, 2022). Despite the 
relative high precision and flexibility of ALS data to detect and delineate 
canopy gaps, ALS datasets are rarely acquired at short intervals, which 
limits their operational use for routine monitoring forest canopy dy
namics (Zhang et al., 2025). There have been a number of reviews 
examining different patterns of gap size distributions in forest types 
globally (Goodbody et al., 2020; Rodes-Blanco et al., 2023) and the 
application of these approaches to assess mortality also demonstrates 
the usefulness of this information for forest management activities 
(Huertas et al., 2022; Riofrío et al., 2025). One area of future work is the 
continued refinement and accuracy assessment of these gap detection 
techniques (Coops et al., 2021; Fischer et al., 2024). Field-based esti
mates of gaps are challenging to acquire and would ideally be directly 
measured within the forest stand. In reality, other remote sensing type 
techniques, for example, hemispherical photographs, are used to vali
date ALS estimates, but direct correlation of ALS-derived gaps with field 
measured gap area is challenging (Gaulton and Malthus, 2010). Given 
the importance of gaps in these mortality predictions and in helping 
explain the observed species shifts, validation of gap estimates and their 
application at fine spatial scales to inform management is a logical next 
direction.

Although our results showed that multiple pathways exist among 
SFUs, we found that stands dominated by black spruce and jack pine 
tend to be more stable than more diverse forests (low in species domi
nance), for example, mixed conifers, mixed hardwoods and mixedwoods 
types. Zhu et al. (2025) obtained similar findings, suggesting that forest 
dynamics like mortality, recruitment and growth are primary drivers of 
successional transitions on diverse stands, while disturbances and 
structural attributes highly drive transitions on forest dominated by a 
single species. For instance, the two most frequent transitions—MH2 to 
MC2 and SF1 to SP1—correspond well with known disturbance- 
mediated successional pathways. The former likely reflects localized 
FTC-related impacts on trembling aspen, while the latter is consistent 
with selective loss of balsam fir in SF1 stands where this species repre
sents less than 35% of composition and is most susceptible to spruce 
budworm.

Our findings highlight the importance of disturbance regimes to 
define the likely successional pathway, especially in stands dominated 
by species more susceptible to spruce budworm or FTC defoliation 
events. The resulting patterns of FTC influencing hardwood-to- 
mixedwood transitions is consistent with well-established dis
turbance–succession theory and empirical studies of mixedwood dy
namics (e.g., Moulinier et al., 2013). FTC infestation duration showed a 
weak but increasing effect on transition probability at higher defoliation 
intensities, particularly for stands with higher hardwood content. This 
pattern supports the hypothesis that FTC may contribute to PO1 to MH2 
transitions in the eastern portion of the RMF. Similarly, Moulinier et al. 
(2013) reported that multiple years of defoliation likely caused more 
rapid canopy transition from aspen dominated to mixedwood stands. 
Authors noted that the proportion of large gaps and aspen mortality 
increased with FTC defoliation intensity that will likely accelerate the 
transition to mixedwood stands.

On the other hand, we observed a limited but detectable influence of 

spruce budworm in spruce–fir systems, for instance, stands are likely 
transitioning to a spruce-pine composition (SP1) after repeated cycles of 
defoliation and infestation. Because SBW activity during the study 
period was weak and RMF is dominated by black spruce (a relatively 
resistant host), any SBW-related compositional effects are expected to be 
modest and concentrated in minority host components. We therefore 
interpret SBW covariates as potential contributors to localized, small- 
magnitude shifts rather than as primary drivers of broad landscape- 
scale transitions. The different susceptibility among host species to 
spruce budworm triggers mortality (Bouchard and Pothier, 2010), pro
vides stability (Sánchez-Pinillos et al., 2019) or reduces growth at 
different rates (Morin-Bernard et al., 2024), where typically, black 
spruce-dominated forests are usually less defoliated than balsam fir or 
white spruce forests (Hennigar et al., 2008). Moreover, initial canopy 
cover and stand height are key attributes that modulate the spruce 
budworm infestation severity, where more open stands are less sus
ceptible to infestations (Trotto et al., 2024).

While the spatial variability of canopy cover, height and forest 
structural attributes can be accurately captured by ALS data, the current 
characterization of spruce budworm damage and delineation of infested 
area by periodic interpretation of aerial surveys may potentially provide 
limited temporal and spatial information on disturbance distribution, 
especially for light and intermediate attacks at a fine scale (Coops et al., 
2020). The combination of aerial or satellite imagery with structural 
metrics derived from point clouds has shown promising results to pro
vide fine spatial, spectral, and temporal scale analyses of forest insect 
disturbances (Rahimzadeh-Bajgiran et al., 2018; Senf et al., 2017; 
Trumbore et al., 2015). For instance, digital photogrammetric point 
clouds, derived using visible and near-infrared aerial imagery, might 
facilitate estimation of cumulative spruce budworm defoliation 
(Goodbody et al., 2018). Additionally, the availability of concurrent ALS 
acquisitions allows characterize the changes in structural attributes 
associated with different severity levels of spruce budworm attacks 
(Trotto et al., 2024).

Producing detailed spatial and multitemporal information of tree 
species requires non-trivial methodological considerations to ensure the 
consistency of the mapped species and that the observed changes in 
species composition represent the likely successional transitions. For 
instance, applying algorithms that consider the spatial and temporal 
differences of the spectral signature for a given species from multiple 
ecological zones, species assemblages, and environmental conditions 
(Fassnacht et al., 2016; Hermosilla et al., 2024; Gilić et al., 2023). 
However, national accuracy statistics of species classification cannot be 
directly assumed at local-scale (i.e., RMF), because the occurrence 
probability of non-dominant species may not necessarily reflect their 
prevalence in a given pixel. Thus a careful consideration of thresholds 
are required to determine their meaningful presence (Hermosilla et al., 
2022). Beside defining thresholds for class membership at pixel level 
and the relative presence per stand for a given species, a local validation 
of species classification is advised to assess the discrepancies between 
model predictions and reference species composition. In our local vali
dation, Landsat-derived SFU classification achieve local accuracies 
>60% for most SFU classes in comparison to FRI photo-interpreted SFU 
(Fig. S1). It is worth to note that SFU misclassification were systematic, 
not random, and primarily restricted to SFU classes with similar species 
compositions, such as, spruce–fir vs. spruce–pine (SF1–SP1), birch- 
poplar vs. mixed hardwood (BW1–MH2) and mixed conifers (MC2). 
The accuracy levels in our validation assessment are comparable to 
recent studies combining multispectral imagery and ALS data to esti
mate species proportions at stand level. For example, Cao et al. (2025)
and Murray et al. (2025) achieved species prediction errors on the order 
of 10–20% depending on the taxon and stand composition. Although 
these approaches estimate continuous species proportions rather than 
discrete SFU classes, their reported uncertainty ranges align with the 
accuracy levels we observe locally and reinforce that our detected 
transitions are unlikely to result from random misclassification. 
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Moreover, considering established successional transition rules (Lennon 
et al., 2016) and the temporal consistency assessment of SFU transitions 
might help to refine the time series and reduce the uncertainty related to 
the species mapping (Gómez et al., 2016), especially for developing local 
applications that facilitate informed decisions regarding forest man
agement and conservation planning.

The implementation of a continuous forest inventory framework 
(Coops et al., 2023; Mulverhill et al., 2024) to deliver updated forest 
inventory attributes cost-effectively also requires updated information 
on forest composition. Together, the Landsat-based species composition 
trajectories and structural attributes and mortality estimates derived 
from ALS data represent a set of ecological indicators that capture both 
compositional and structural dimensions of forest condition. These in
dicators respond to disturbance gradients, revealing the magnitude and 
direction of successional shifts, and can be consistently mapped across 
management units. Moreover, flagging stands that are likely to show 
changes in species composition would facilitate an effective method for 
designing a field measurement program to validate the forest inventory 
outcomes. Lastly, managers can leverage from accurate, spatially 
explicit, and detailed information to design and implement adaptative 
silviculture regimes at for operational management scale (Achim et al., 
2022), especially with more frequent and drastic disturbances to be 
expected.

5. Conclusion

This study illustrates the value of integrating satellite-derived species 
composition time series, ALS-based structural attributes and disturbance 
history to detect and predict species composition transitions in boreal 
mixedwood forests. This integration enabled us to identify and model 27 
compositional transitions within mid to late successional stages. While 
only a small fraction of the landscape experienced species composition 
changes within the 13-year study window, these changes were strongly 
associated with mortality rates and canopy gaps. Additionally, stands 
with repeated defoliation from spruce budworm outbreaks exhibited 
higher probabilities of transition, particularly to spruce-pine assem
blages. These results underscore the importance of structural and 
disturbance-based indicators in understanding and forecasting species 
shifts during mid to late successional stages. The relatively low overall 
area undergoing transition reflects both the slow pace of forest succes
sion and the short temporal window considered. By identifying stands 
prone to compositional change, our findings support the development of 
continuous forest inventory systems and inform adaptive silvicultural 
planning to enhance resilience under increasing disturbance pressures. 
Moreover, combining Landsat-derived species-assemblage trajectories 
with ALS-derived structural and mortality metrics, our analysis provides 
a suite of spatially explicit indicators relevant for assessing forest 
integrity and monitoring successional dynamics across managed boreal 
landscapes.
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Gilić, F., Gašparović, M., Baučić, M., 2023. Current state and challenges in producing 
large-scale land cover maps: review based on recent land cover products. Geocarto 
Int. 38, 2242693.

Gillis, M.D., Omule, A.Y., Brierley, T., 2005. Monitoring Canada’s forests: the National 
Forest Inventory. For. Chron. 81, 214–221.

Gluckman, J., 2016. Design of the Processing Chain for a High-Altitude, Airborne, Single- 
Photon Lidar Mapping Instrument. Laser Radar Technology and Applications XXI, In, 
pp. 20–28.
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