Ecological Indicators 183 (2026) 114659

ECOLOGICAL
INDICATORS

Contents lists available at ScienceDirect

Ecological Indicators

o %

ELSEVIER

journal homepage: www.elsevier.com/locate/ecolind

Linking species composition shifts from satellite time series to disturbance
regimes and Lidar-derived structural and mortality indicators in
boreal mixedwoods

a,*

/s , . 3 « L . . -
José Riofrio® , Nicholas C. Coops®, Muhammad Waseem Ashiq°, Alexis Achim ©
& Department of Forest Resources Management, University of British Columbia, Vancouver, BC, Canada

b Science and Research Branch, Ontario Ministry of Natural Resources, Peterborough, ON, Canada

¢ Department of Wood and Forest Sciences, Université Laval, 2425 rue de la Terrasse, Québec, QC G1V 0A6, Canada

ARTICLE INFO ABSTRACT

Keywords:

Species composition
Forest succession
Structural attributes
Mortality

Spruce budworm

Understanding species composition shifts in boreal mixedwoods forests is essential for anticipating forest suc-
cession pathways under changing disturbance regimes. Species composition transitions in boreal forests reflect
complex successional processes influenced by interactions between disturbance regimes, structural dynamics,
and species traits. In this study, we integrated satellite-derived annual species composition data with airborne
laser scanning (ALS) structural metrics, spatially explicit mortality estimates and disturbance history to inves-
tigate composition transitions across ~288,000 ha of the Romeo Mallette Forest, Ontario. We focused on mid to
late successional stages, identifying 27 species composition transitions and modeling their likelihood using
extreme gradient boosting (XGBoost). From 2005 to 2018, 5% of the analyzed stands (~42,000 ha) predomi-
nantly transitioned from hardwood to coniferous or mixed compositions. Transition probabilities were strongly
associated with ALS-derived gap metrics, mortality rates, and cumulative years of spruce budworm and Forest
Tent Caterpillar defoliation, while traditional site factors had limited predictive value. Notably, the number of
years affected by spruce budworm defoliation significantly increased the likelihood of transition in stands
dominated by more susceptible species. The results advance our understanding of mid-late succession pathways
and support the integration of remote sensing time series into forest monitoring frameworks, improving in-
ventory accuracy, and guiding adaptive management under evolving disturbance regimes.

1. Introduction

Timely and accurate information on forest attributes is essential for
establishing forest monitoring and management plans. Airborne laser
scanning (ALS) provides detailed and accurate measurement of forest
attributes like forest height, canopy cover, canopy gaps, standing vol-
ume and biomass with a high level of spatial detail and accuracy (Coops
et al.,, 2021; White et al., 2017), making it increasingly valuable to
develop Enhanced Forest Inventories (EFI) (Fassnacht et al., 2024; White
et al., 2025). Complementary annual or sub-annual multispectral sat-
ellite data allows to periodically update EFI attributes enabling to
monitor the status and change of forest resources and forecasting future
attributes associated with specific management actions or changing
environmental conditions (Coops et al., 2023).

However, forest inventories require additional forest attributes not
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readily estimated from typical ALS systems, which utilize single wave-
lengths and therefore have limited spectral differentiation on the return
pulses. For example, species composition, which is used at the stand
level to classify stands into different assemblages using estimations of
species proportions by basal area, volume, canopy cover, or strata spe-
cies occupancy (Little et al., 2024; Parton et al., 2006). Such assem-
blages then facilitate the development of various modeling products, for
instance, yield/growth curves, silvicultural intensity regimes, and suc-
cession pathways, needed for forest management planning (Lennon
etal., 2016; Penner and Pitt, 2019). As a result, manual interpretation of
aerial imagery or the use of time-series of satellite imagery to generate
species composition information often combined with climate and
terrain information, is used to fill this important information gap.
When these datasets are combined, the level of spatial detail and
accuracy can provide insights not only into the current structure and
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composition of forest stands, but an also offer information from a variety
of forest ecosystem processes. Forest succession, for example, represents
changes in ecosystem functions, affecting wood supply, wildlife habitat
provisioning, carbon storage, and other forest ecosystem services
(Anyomi et al., 2022). Moreover, predicting stand forest succession
remained a central challenge for scientists and foresters for over a cen-
tury (Taylor et al., 2020); emerging different conceptual frameworks of
vegetation succession, that for instance, hypothesized successional dy-
namics as a deterministic process though influenced by stochastic fac-
tors (Fenton and Bergeron, 2013; Taylor et al., 2020) or considering
social and ecological interactions that operate at different spatial scales
(Poorter et al., 2024). Following disturbance events, multiple succession
pathways are possible depending on diverse mechanisms (Taylor and
Chen, 2011) and complex interactions between the ecological properties
of the regional species pool and the environmental conditions, distur-
bance regimes, and silvicultural prescriptions (Anyomi et al., 2022;
Bergeron et al., 2014).

Principally, our understanding of forest succession has been driven
by the use of successive measurements from permanent sample plots
(Lennon et al., 2016; Taylor et al., 2020; Zhu et al., 2025). However,
achieving a balanced representation of different environmental condi-
tions, species abundance, and possible transitions requires long-term
remeasurements over broad areas that are not always logistically or
financially possible. Alternatively, multispectral satellite time series
now provide consistent, long-term information for mapping tree species
and stand structures and it is increasingly being applied to study the
long-term temporal trends in vegetation composition and disturbance
dynamics over large areas (Bonannella et al., 2024; Fassnacht et al.,
2016; Hermosilla et al., 2024). Spatially detailed time series of species
composition derived from remote sensing data facilitates the monitoring
of changes in species over time and allows assessing the implications of
changes on forest stability, management and ecosystem services
(Wulder et al., 2024). Moreover, temporal consistency of species
composition time series allows the analysis of the underlying process
triggering composition shifts and successional dynamics (Gilic et al.,
2023; Hermosilla et al., 2024). Furthermore, remotely sensed estimates
of species composition, canopy structure, and mortality rates provide
measurable and repeatable signals of forest condition and stability.
These indicators are sensitive to disturbance regimes and successional
processes and can be updated consistently through satellite time series.

Tree mortality or damage from non-stand replacing disturbances
caused by insect infestation, drought, windthrow, competition, or
silvicultural interventions alter the vertical structure, creating condi-
tions for recruiting trees to establish and for remaining trees to access
available resources, leading to changes in tree species composition over
time (Bergeron et al., 2014; Brassard and Chen, 2010). Species compo-
sitional shifts at early and late stages might be driven primarily by tree
growth and recruitment of individuals, while the relative contribution of
mortality increases with the progression of ecological succession from
middle to late stages (Nakadai and Suzuki, 2025). Thus, estimates of the
standing basal area, volume, or biomass losses can provide insight into
turnover; moreover, differences in mortality rates among species might
also entail large differences in other ecosystem processes, such as species
composition shifts and successional changes (Caspersen, 2004; Rees
et al., 2001). In addition, interacting factors such as site conditions,
species abundance, fire cycle, climate, and disturbances might result in a
wide variation of forest composition changes (Anyomi et al., 2022).

In fact, recurrent eastern spruce budworm (Choristoneura fumiferana
[Clem.]) and Forest tent caterpillar (Malacosoma disstria [Hbn.]) attacks
are one of the main biological disturbances in Canada, producing
annually moderate and severe tree defoliation events in Ontario since
2000 (National Forestry Database, 2025). Overall, stands affected by
spruce budworm or Forest tent caterpillar (FTC) defoliation show
changes in forest dynamics by reductions in tree vigour and canopy
openness that produce volumetric timber losses and understory
recruitment, causing forest structural and compositional changes (Chen
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and Popadiouk, 2002). Stability of species community and resistance
and resilience patterns to spruce budworm outbreaks might vary widely
depending on the dominant species (Hennigar et al., 2008) and
composition and structure of the system (Sanchez-Pinillos et al., 2019;
Trotto et al., 2024). In the case of FTC, variability in outbreak severity
and duration creates a range of canopy structures altering regeneration
patterns that however differ between mixed and deciduous dominated
stands (Moulinier et al., 2013).

In this study, we examined relationships between disturbance re-
gimes and stand-level structure dynamics, specifically mortality as
detected from ALS tree canopy gaps, with available spatially explicit
coverages of annual tree species composition, derived from Landsat
imagery (Hermosilla et al., 2024). Our goal was to test whether a
combination of remotely sensed stand structural and mortality in-
dicators, together with spatially localized insect infestation information,
helps explain ecologically plausible compositional transitions under
conditions where the effects of insect outbreaks are expected to be
subtle. To do so, we ask the following questions:

- What species transitions do we observe from annual species
composition time series derived from Landsat imagery?

- Do the observed species transitions agree with the expected changes
following successional transition rules in boreal environments?

- Do the different species composition changes relate to stand struc-
ture, mortality rate estimates, disturbance regime and site
conditions?

Once answered, we identify and map areas where changes in species
composition at the stand-level are likely to occur. The results provide not
only insights for forest managers working in these and similar forest
types on some likely transitions underway in their forest stands, but also
provide a new methodology where advanced remote sensing methods,
using data which is free and open, can provide informed insights into
species-level changes in boreal and mixed forests more broadly.

2. Methods
2.1. Study area

The Romeo Mallette Forest (RMF) is a managed forest located in
northern Ontario, Canada, within the Boreal Shield Ecozone (Fig. 1).
Covering approximately 630,000 ha, 86% of this area is productive
forest land, primarily used for timber production and fiber procurement.
Management activities in RMF are guided by the Forest Management
Plan based on a 10-year cycle (currently 2019-2029) following Ontario's
Crown Forest Sustainability Act, which is publicly available at http
s://nrip.mnr.gov.on.ca/s/fmp-online?language=en_US. The managed
productive forest land in RMF comprises 82% of regular production
forest stands, 6% below regeneration status, 2% of protection forest, and
10% classified as recent disturbed stands. The managed stands are
dominated by tree species such as black spruce (Picea mariana (Mill.)
BSP), jack pine (Pinus banksiana Lamb.), trembling aspen (Populus
tremuloides Michx), white spruce (Picea glauca (Moench) Voss), and
paper birch (Betula papyrifera Marshall). Of these tree species, black
spruce is the most prevalent in RMF, dominating 50% of the forest stands
while only 8% of stands lack any proportion of black spruce. Manage-
ment activities are scheduled and projected in Standard Forest Units
(SFU) defined from tree species composition (Table 1), managed under
the same silvicultural system, with about 70% of the harvested wood
volume anticipated to come from black spruce, jack pine, and poplar-
dominated stands. SFU's aggregate forest stands for management pur-
poses based on tree species composition, succession following natural
disturbances or silvicultural treatments (Little et al., 2024; Parton et al.,
2006). Forest stands in the RMF are influenced by multiple disturbance
agents, including wildfire, insect outbreaks, harvesting, and silvicultural
activities. Resulting in diverse stand ages and development stages, with
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Fig. 1. Standard Forest Unit (SFU) classes in the Romeo Mallette Forest were defined from Landsat species composition maps with relative proportions of SFU in the

study area. SFU's abbreviations in Table 1.

considerable managed forest area (38%) in operable age classes
(60-100). The terrain varies from flat and water-saturated in the north
to moderately rolling and better drained in the south, with elevations
between 280 and 450 m. The forest experiences long, cold winters and
short, warm summers, with average temperatures ranging from
-16.8°Cto 17.5 °C.

2.2. Data

2.2.1. Species composition time series

We used the satellite-derived time series of the major dominant tree
species of Canada's forested ecosystems developed by Hermosilla et al.
(2024). The national-level annual tree species maps from 1984 to 2022
were calibrated based on Canada's National Forest Inventory (Gillis
et al., 2005) using regional Random Forest classification models. Species
composition time series were generated using predictor variables
derived from Landsat surface reflectance best-available-pixel image
composites, combined with geographic, climate, phenological, and
topographic data (Hermosilla et al., 2022). The annual dominant tree
species classification presented by Hermosilla et al. (2024) showed an
overall accuracy of 86.1% + 0.14% (95% confidence interval), and
predicted both the leading tree species as well as the likelihood of class
membership to each of the targeted 37 species at 30 m resolution
(Hermosilla et al., 2024). The membership likelihoods provide the
confidence associated with the presence of tree species in addition to
those classified as leading, allowing for defining the proportion of each

species and assigning tree species assemblages at the stand level
(Hermosilla et al., 2022; Sales et al., 2022; Wulder et al., 2024).

2.2.2. Forest resources inventory

A polygon-based Forest Resources Inventory (FRI) available for RMF
was initially established with manual photo-interpretation of multi-
spectral aerial imagery acquired in 2005. FRI polygons reflect infor-
mation about tree cover, composition, successional stage, and
silvicultural interventions. About 20% of the stands initially established
were updated using new aerial photographs or field-based surveys
regularly until 2014 to account for harvesting, natural depletion, silvi-
cultural treatments, regeneration, or changes in stand development
stages. Our analysis focused exclusively on polygons of productive
forested type with a minimum area of 10,000 m2.

We extracted stand age and site conditions descriptors for each stand
from the FRI attributes. Stand age was calculated for each stand using
the origin year. FRI also included moisture regime (MR), nutrients
regime (NR) and site class (SC) as indicators for site conditions. MR and
NR are relative rankings of substrate moisture and nutrient supply
throughout the growing season, estimated based on variations in
texture, pore pattern, substrate depth, topographical position, and
drainage (MINR, 2021). In order to simplify the interpretation of the
results, we summarized the MR levels into four classes, i.e., dry, fresh,
moist and wet; and the NR levels into three classes, poor, medium and
rich. SC is considered a proxy of the site quality of the stands and is
defined using species-specific height and age growth curves for the
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Table 1

Criteria of species proportion composition to assign Standard Forest Units (SFU)

classes used in the RMF Forest Management Plan 2019-2029 (MNR, 2018).

Table 1 (continued)
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Standard forest
units (SFU)

Species proportion criteria

Description

Standard forest
units (SFU)

Species proportion criteria

Description

White and red
pine (PRW)

Tolerant-lowland
Hardwood
(OH1)

Spruce bog
(BOG)

Black spruce
(SB1)

Jack pine
(PJ1)

Lowland Conifer
(LC1)

Pine-Spruce
(PJ2)

Spruce-Pine
(SP1)

Spruce-Fir
(SF1)

Red pine > 70 OR (White
pine + Red pine + White
spruce > 40 AND White
pine> 30) OR White pine +
Red pine > 40

Black ash + White elm +
Balsam poplar > 30 OR Black
ash + Elm -+ Balsam poplar +
Sugar maple + Yellow birch
+ Red maple > 30

Black spruce + American
larch > 70 AND White pine
=0

Black spruce > 70 AND
(Sugar maple + Red maple +
Yellow birch + Red pine)
=0 AND (Jack pine + White
Pine) <10

(Jack pine > 70 AND
(Trembling aspen +
Largetooth aspen + White
birch + Silver maple® +
Black ash + Balsam poplar +
Red maple + Elm + Yellow
birch) <20

(Eastern white cedar +
American larch + Black
spruce) >70 AND (Sugar
maple + Red maple + Yellow
birch + Red pine) =0 AND
(White Pine + Jack pine)
<10

((Jack pine + Black spruce +
Red pine) >70 OR (Jack
pine> 50 AND (Jack pine +
Black spruce + Balsam fir +
White spruce + Eastern
hemlock + White Pine + Red
pine + Eastern white cedar +
American larch) >70)) AND
(Jack Pine > Black Spruce)

(Black spruce + White spruce
+ Balsam fir -+ Eastern white
cedar + American larch +
White pine + Jack pine +
Red pine + Eastern
hemlock) >70 AND ((Balsam
Fir + Eastern white cedar +
White pine + American larch
+ White spruce + Eastern
hemlock) <20 OR (Jack
Pine) >30)

(Black spruce + White spruce
+ Balsam fir -+ Eastern white
cedar + American larch +

Stands are dominated by red
pine or red pine-white pine
mixture growing on a variety
of soil types, from dry to moist
sites and sandy to silty soils.
Stands are an uncommon
forest unit in the boreal
northeast.

Stands containing primarily
self-replacing, tolerant
hardwood species on upland
sites with sandy to coarse
loamy soils of morainal origin.
Stands are dominated by low-
productivity black spruce and
larch. Stands principally for
biodiversity and wildlife
habitat purposes related to
sustainable forest
management planning.

Stands dominated by black
spruce growing on wet, deep
organic soils and on moist,
peaty-phase mineral soils in
lower slope positions. These
stands can be of fire origin and
will self-replace.

Stands are dominated by jack
pine growing on dry to fresh,
sandy to coarse loamy soils of
glaciofluvial origin. These
stands are of fire origin. Stands
120 years and older on dry
sites where the pine
component has declined to as
low as 50% are still included
in this SFU.

Mixed stands of black spruce,
larch, and (or) eastern white-
cedar occupy wet, moderately
deep organic soils associated
with drainage ways or the toe
of slopes where telluric water
augments the on-site nutrient
pool. These stands rarely burn
and will self-replace. This SFU
can also include stands with
white birch on organic soils.
Mixed stands of jack pine and
black spruce growing on dry to
moist, sandy to coarse loamy
soils of glaciofluvial origin.
These stands are of fire origin
or will develop with time from
PJ1. Jack pine stands with an
important balsam fir
component are included in
this SFU.

Stands are upland black
spruce-dominated conifer
stands on fresh to moist
mineral soils of all textures.
They can include almost pure
black spruce stands with very
little or no jack pine. These
stands are of fire origin or will
develop through succession
from other forest types.

Mixed conifer stands of white
spruce, balsam fir, black
spruce, and eastern white

Poplar
(PO1)

Birch-Poplar
(BW1)

Mixedwoods
(MW1)

Mixed Hardwood
(MH2)

Mixed Conifers
(mcC2)

White pine + Jack pine +
Red pine) >70

(Trembling aspen + Balsam
poplar + White birch +
Sugar maple + Black ash +
Red maple + Yellow birch +
Elm) >70 AND (Trembling
aspen -+ Largetooth aspen +
Balsam poplar) >50
(Trembling aspen +
Largetooth aspen + Balsam
poplar + White birch +
Sugar maple + Black ash +
Red maple + Yellow birch +
Elm) >70

(Jack pine + Red Pine) >20
OR (Balsam fir <20 AND
White spruce <20 AND
Eastern white cedar <20)

(Trembling aspen +
Largetooth aspen + White
birch + Sugar maple +
Yellow birch + Red maple +
Black ash -+ Elm + Balsam
poplar) >50

(Black spruce + White spruce
+ Balsam fir + Eastern white
cedar + American larch +
White pine + Jack pine +
Red pine) >50 AND all
remaining stands.

cedar growing on fresh to
moist mineral soils of all
textures. This SFU develops
primarily from succession and
rarely from fire origin. Highly
productive stands are often
found on lower slope positions
associated with telluric
seepage.

Hardwood stands dominated
by trembling aspen. They
typically occur on fresh to
moist, loamy to clayey soils.
These stands are primarily of
fire origin.

Hardwood stands dominated
by white birch. They occupy
some of the same sites that PO
stands occupy, as well as
somewhat drier and coarser-
textured soils. They can be of
fire origin or develop through
succession from other forest
conditions.

Mixed conifer-deciduous
stands comprising trembling
aspen, white birch, jack pine,
and black and white spruce.
They occur on dry to moist,
sandy to coarse loamy soils.
These stands can be fire origin
or develop through
succession. Stands that have
undergone succession may
lack jack pine but will have
<20% late successional
species such as balsam fir,
white spruce, and eastern
white-cedar in the canopy.
Stands are mixed conifer-
deciduous, comprising largely
trembling aspen, white birch
(>50%). Black and white
spruce, balsam fir, or eastern
white-cedar represent less
than 50%. They occupy fresh
to moist, medium loamy to
clayey soils. These stands most
often develop through
succession from other SFUs.
Mixed conifer stands
comprising largely black and
white spruce, balsam fir, and
eastern white-cedar. They
occupy fresh to moist, medium
loamy to clayey soils. These
stands most often develop
through succession from other
SFUs

dominant tree species (MNR, 2009). We removed stands with records of
recent silviculture interventions, for instance, commercial thinning or
spacing treatment. We also excluded stands with exposed bedrock or
minimal soil depth, where forest regeneration and growth would be
constrained due to poor growing conditions.

2.2.3. Mortality rate model

In the absence of stand-replacing disturbances (specifically wildfires
and harvesting), tree mortality or damage from non-stand-replacing
disturbances (mainly caused by insect infestation, drought, wind-
throw, competition, or silvicultural interventions) leads to changes in
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forest structure and tree species composition over time (Bergeron et al.,
2014; Brassard and Chen, 2010). Tree mortality from non-stand-
replacing disturbances creates canopy gaps and changes in the vertical
structure of the stand (McCarthy, 2001; Yamamoto, 2000). Riofrio et al.
(2025) demonstrated that ALS data can be used to estimate stand-level
mortality over large areas through the characterization of canopy
gaps, vertical and horizontal structural complexity.

In this study we used the mortality rate model developed by Riofrio
et al. (2025) that provides spatially explicit estimates of mortality
probability and mortality rates at 20 m resolution across forest types and
structural attributes over the RMF. The model relies on data from
repeated measurements of permanent sample plots and ALS point cloud
data and requires stand-level factors, such as stand age and species
composition and ALS-derived metrics related to canopy structure and
canopy gaps as predictors. The model was calibrated using mortality
rate observations of permanent sample plots, showing a RMSE of 0.0107
and model efficiency of 0.373 and revealed the spatial variation of the
expected mortality rates across boreal mixedwood forests.

There are three key considerations regarding the mortality model
application in our analysis. First, the model was designed to inform
stand-level mortality rates attributable to non-stand-replacing distur-
bances. The model was fit considering only permanent sample plots with
a mortality rate lower than 0.1, avoiding mortality events that might be
triggered by stand-replacing disturbances. Second, the model estimates
the proportion of basal area loss (mortality rate) between concurrent
plot measurements. Basal area loss may be a better indicator of distur-
bance severity (Hart and Kleinman, 2018) for compositional shifts at
middle to late stand development stages (Nakadai and Suzuki, 2025),
because after the stem exclusion phase, as the stand matures, composi-
tional shifts based on dominance (i.e., basal area) are mainly influenced
by the mortality of large trees rather than recruitment (Nakadai and
Suzuki, 2025). Finally, because the mortality rate model was calibrated
using plot measurements between 2004 and 2020, the target period in
this study was selected to match the interval of the mortality rate pre-
dictions. During this period, we calculated the mean (MorR_mean) and
standard deviation (MorR_sd) mortality rate for each stand selected in
the analysis.

2.2.4. ALS-derived variables

ALS data was acquired in June-July 2018 under leaf-on conditions
using a Leica SPL100 single photon LiDAR (SPL) sensor operating at a
green wavelength (A = 532 nm). The SPL system emitted pulses in a 10
x 10 beamlet array and was flown at an average altitude of 3800 m
above ground level with a nominal speed of 350 km/h along parallel
flight lines with 50% overlap. Data acquisition adhered to the Ontario
Specification for LiDAR Acquisition (MNR, 2016), yielding a vertical
accuracy class of 2.6 cm and a reported vertical RMSE of 5.1 cm. Post-
processing by the data provider included noise filtering, georeferenc-
ing, and classification based on (Gluckman, 2016), resulting in an
average point cloud density of 40 points/m? Point clouds were
normalized to above-ground height using a triangulated irregular
network of ground returns.

Normalized ALS data was used to derive vegetation structure metrics
on a 30 x 30 m grid aligned with the Landsat-based species composition
time-series. ALS data processing was conducted using the lidR R package
(Roussel et al., 2020). The 99th percentile height of first returns (p99)
was calculated, likewise the mean (p99_mean) and standard deviation
(p99_sd) of p99 were computed by each delineated polygon (i.e., stand)
included in the analysis. Canopy gaps were identified from a 0.5 m
resolution canopy height model (CHM) generated using the pit-free al-
gorithm (Khosravipour et al., 2014). Gaps were delineated using the
ForestGapR package (Silva et al., 2019) with a fixed height threshold of
<3 m, following established thresholds for boreal and temperate forests
in Canada (Goodbody et al., 2020; White et al., 2018). Only contiguous
gaps between 4 m? and 10,000 m? were retained. To exclude anthro-
pogenic disturbances such as forestry roads, gaps were filtered using a
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shape index (Patton, 1975), calculated as (p/ (2% 7 xa)’® >, where p is

perimeter and a is area of a given gap. Gaps with a shape index >3 and
area > 100 m? were excluded to remove long, narrow, likely non-
regenerating gaps. Finally, the proportional gap area (GapProp) by
stand was also computed from the delineated canopy gaps.

2.2.5. Disturbances caused by insect damage events

Data on non-stand-replacing disturbances due to insect damage were
gathered from the available disturbance layers produced by the Ontario
Ministry of Natural Resources (MNR). Mapped events of forest insect
damaging trees by defoliation, foliage mining and wood boring are
produced on an annual basis, providing georeferenced layers publicly
available online (https://geohub.lio.gov.on.ca/) (MNR, 2024). We
calculated the cumulative number of years of moderate to severe defo-
liation or insect damage events between 2000 and 2020, computed at
30x30m resolution for the main insect outbreaks: eastern spruce bud-
worm (Choristoneura fumiferana [Clem.]) and Forest Tent Caterpillar
(Malacosoma disstria [Hbn.]). Fig. 2 indicates a relatively mild outbreak
of spruce budworm in the north of RMF, and only 1-3 years of defoli-
ation in the south. Similarly for FTC, there was some lengthy defoliation
on the far eastern edge of the RMF.

Given the limited and spatially variable spruce budworm and Forest
Tent Caterpillar activity during 2000-2020, we anticipated that any
insect-driven signals would be subtle. Our goal was therefore not to
detect major outbreak impacts—which are unlikely in this context—but
to test whether remotely sensed indicators from stand structural and
mortality estimates together with subtle insect-related effects help
explain ecologically meaningful species compositional transitions.

2.3. Analysis approach

2.3.1. Building species composition transitions

In this study, we use class membership likelihood ranks derived from
the Random Forest tree species classification (Hermosilla et al., 2024) to
assign standard forest units (SFU) at the stand-level (i.e., delineated
polygons available in the FRI). We calculated the relative frequency of
the class membership likelihood values from the species present in each
stand by averaging the class membership probability estimates of each
class over all pixels (Sales et al., 2022; Wulder et al., 2024). We included
only species with a relative presence in the stand greater than 2.5%.
Additionally, to prevent the noise from random probability assignments
in the classification algorithm and to ensure that tree species with low
probabilities were not included, pixels with class membership likelihood
values of < 5% were excluded (Wulder et al., 2024). Then, class mem-
bership percentages by species were used to assign each polygon to SFU
following the classification system implemented in the forest manage-
ment plan for the Romeo Malette Forest (MNR, 2018). This classification
system uses a modified version of the classification criteria from Parton
et al. (2006). Table 1 depicts the SFU definition based on species
composition proportion. SFUs in Table 1 are ordered according to the
classification criteria algorithm (Little et al., 2024; MNR, 2018).

From the total available stand inventory data (43,806 productive
forest stands), we selected 28,493 stands covering 287,975 ha that fit the
criteria as follows (Fig. 1). First, as we are interested in changes in
species composition due to non-stand-replacing disturbances in stands at
middle to late development stages, stands younger than 30 years were
excluded to remove early stand succession pathways following stand-
replacing disturbances (i.e., harvesting). In addition, because some
SFU successional transitions are unlikely to occur in the absence of
stand-replacing disturbances or they are too rare, we only considered the
SFU empirical succession rules implemented in the current forest man-
agement plan of the study area (Lennon et al., 2016). Thus, only possible
SFU changes (Fig. 3) were included in the analysis to reduce the un-
necessary dimensions of the SFU transitions in the classification model.
Our analysis was focused on the SFU transitions between 2005 and 2018
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outbreaks, data source MNR (2024).
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to match the calibration period of the mortality rate model. Finally, to
improve the consistency and reduce the uncertainty of the likelihood of
species class membership from the model, we selected stands that
maintained the same SFU class four years before or after the analysis
period (2005-2018). Finally, we check the Landsat-derived SFU classi-
fication to the corresponding FRI photo-interpreted SFUs matching each
stand to the year in which it was last updated in the FRI (Fig. S1).

2.3.2. Modeling species composition transitions

In order to determine whether species composition transitions were
predictable from a set of explanatory variables (Table 2), we used the
extreme gradient boosting algorithm (XGBoost) (Chen and Guestrin,
2016). XGBoost is a scalable machine learning method for tree boosting
regression and classification based on an iterative process that improves
model performance by adding trees to reduce a loss function (Friedman,
2001; Natekin and Knoll, 2013). This machine learning approach can
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Table 2
Description of explanatory variables used in the XGBoost species composition
transitions models.

Variable Description Unit Range (mean)
AGE Stand age Continuous (yr) 43-200 (85)
MRs Moisture regime Ordinal dry, fresh,
moist, wet
NR Nutrients regime Ordinal rich, medium,
poor
Site_class site class indicator Ordinal best, better,
good, poor,
very poor
MorR_mean  Mean stand mortality rate Continuous 0-0.05 (0.07)
(proportion
yr b
MorR _sd Standard deviation of Continuous 0-0.02 (0.004)
mortality rate within the (proportion
stand yr'h
GapProp Gap proportion area of the Continuous 0-0.2 (0.06)
stand (proportion)
p99_mean Mean stand height Continuous (m) 6.5-27.9 (18.1)
p99_sd Standard deviation of height Continuous (m) 0.7-9.3 (2.7)
within the stand
SpBud_max Total number of years of Continuous (yr) 0-4 (0.2)
moderate-to-severe
defoliation due to spruce
budworm
Tent_max Total number of years of Continuous (yr) 0-8 (0.5)

moderate-to-severe
defoliation due to tent
caterpillar

accommodate diverse data distributions and deal with non-normality
and heteroscedasticity, common issues in ecological data. Tree boost-
ing regression analysis is suitable for handling complex, nonlinear re-
lationships, including interactions in ecological data and has been used
to model multiple succession pathways following disturbances in stands
at different development stages (Liu and Yang, 2014; Taylor et al., 2020;
Vidal-Macua et al., 2017).

We fit independent models for each initial SFU class. XGBoost models
were fitted using the SFU's transition classes identified from the satellite-
derived species composition as a categorical response variable. We used
a Bernoulli or multinomial response distributions for SFU with two or
more than two SFU transition classes, respectively. To ensure unbiased
model performance estimates, the data was split into 70% training and
30% test sets, with hyperparameter tuning conducted via 10-fold cross-
validation on the training set and “mlogloss” as the evaluation metric for
hyperparameter combinations in each model construction. Given the
large number of possible combinations of hyperparameters in the
XGBoost model, we use the learning curve combined with the Grid-
Search method for model tuning to determine the optimal combination
of hyperparameters, including eta (0.1-1), max.depth (2-6), subsample
(0.1-1), bytrees (0.4-1), nrounds (50-200), and learning rate (0.01-1).
Optimal settings were based on changes in Area Under the Curve (AUC)
from cross-validation, with a change >0.1 considered significant (Ferri
et al., 2009). In addition, because all the SFU change classes are not
equally represented across the training data (Fig. 3), this is expected to
result in poorer model performance for rarer SFU transition classes and
better performance for more common ones. We balanced the samples in
each SFU change class by reducing the number of samples in the larger
classes (downsampling).

XGBoost models were developed in R using the ‘caret’ package
(Kuhn, 2015) for hyperparameter tuning and the xgboost package (Chen
and Guestrin, 2016) for model fitting. Model interpretation involved
examining the relative influence of variables and plotting partial de-
pendency plots (PDPs) (Greenwell et al., 2019). Variable relative
importance was scaled between 1 and 100 (the most important
explanatory variable) and calculated based on the number of times a
predictor was selected for splitting an individual tree and the
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improvement to the model as a result of each split (Friedman and
Meulman, 2003; Hastie et al., 2009). We also calculated the variable
importance separately for each SFU change class of the multinomial
models by summing model improvement at each split for each variable
and class (Hastie et al., 2009; Taylor et al., 2020). Thus, we were able to
assess which variables contributed the most to each SFU change class as
well as to the overall models. PDPs illustrate the marginal effects of one
predictor variable over the response outcome while other variables are
kept constant. PDPs provide a useful basis for interpretation, accounting
for interactions, and capturing the non-linear, non-monotonic relation-
ships between variables and response probabilities (Greenwell, 2017).
We only showed partial dependency plots for the five variables that
contributed the most in each overall SFU model according to their scaled
relative influence.

Finally, the accuracy of the models for each SFU and SFU transition
class was evaluated using the test dataset. We calculated the overall
accuracy (OA) and No Information Rate (NIR) across all SFU models.
The OA is a global measure of accuracy that indicates the proportion of
observations that were correctly classified. The NIR is the proportion of
stands correctly classified in the largest SFU change class, indicating the
accuracy of the model if only the largest class is predicted. In addition,
we calculated the recall (producer's accuracy — PA), precision (user's
accuracy - UA), and the F-score for each SFU change class. PA represents
the proportion of correctly identified SFU change classes to all the
possible transition pathways, while UA measures the proportion of
correctly identified SFU classes among the predicted SFU change classes.
The F-score combines recall and precision, providing a balanced metric
that penalizes discrepancies between recall and precision and ensures
robust performance evaluation.

3. Results

The satellite-derived species composition layers allowed to identify
27 different composition transitions in stands at middle to late devel-
opment stages, ranging from 2 to 4 different classes by initial SFU.
Regardless of the stands that maintained the same species composition,
the most common transition was MH2-MC2 (Hardwoods leading stands
to conifer mixedwoods), representing 14% of the total stands analyzed,
followed by SF1-SP1 (spruce-fir to spruce-pine dominant stands) at 4%.
On the other hand, the less represented (< 30 stands) composition
transitions in the dataset were SF1-MC2 (18 stands) and MH2-BW1 (16
stands) (Fig. 3).

3.1. XGBoosted regression tree performance

The accuracy of the models over the test data for each SFU is pre-
sented in Table 3. Models yielded OAs ranging from the lowest 0.37 for
SFU transitioning from mixed hardwoods (MH2) to the highest of 0.83
for jack pine-dominated stands (PJ1), indicating a moderate perfor-
mance for all the models. Most of the models showed a greater NIR in
comparison to OA, except the model for poplar-birch stands (BW1).
Furthermore, we also evaluated the performance of each SFU transition
class using the recall, precision and F-score indicators (Table 3). The
models with only two possible SFU changes showed better performance
in comparison to the multinomial models (i.e., more than 2 possible SFU
transitions), showing recall and precision values greater than 0.4. When
multiple SFU transition pathways were modeled, the ability of the
models to predict the correct class decreased as the model complexity
increased. We also note that the less represented SFU change classes in
the testing data to evaluate multinomial models showed the lower F-
score values, for instance, the transitions SF1-MC2 and MH2-BW1.

3.2. Relative importance of variables

The overall scaled variable importance from each SFU model is
presented in Fig. 4. The best-ranked variables in relative importance
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Table 3
Performance diagnostics of XGBoost models over test data for each SFU class.
SFU OA NIR SFU Recall Precision F-score
transition (PA) (UA)
BW1 0.67 0.58 BW1-BW1 0.40 0.67 0.50
BW1-MH2 0.86 0.67 0.75
LC1 0.72 0.88 LC1-LC1 0.74 0.94 0.83
LC1-SB1 0.66 0.26 0.37
MC2 0.42 0.42 MC2-MC2 0.42 0.55 0.47
MC2-MH2 0.26 0.18 0.21
MC2-SF1 0.14 0.16 0.15
MC2-SP1 0.87 0.70 0.78
MH2 0.37 0.56 MH2-MH2 0.33 0.62 0.43
MH2-BW1 0.25 0.01 0.02
MH2-MC2 0.40 0.42 0.41
MH2-SF1 0.47 0.17 0.25
MW1 0.44 0.70 MWI1-MW1 0.46 0.79 0.58
MW1-MH2 0.60 0.06 0.11
MW1-SF1 0.29 0.19 0.23
MW1-SP1 0.60 0.39 0.48
PJ1 0.83 0.81 PJ1-PJ1 0.88 0.92 0.90
PJ1-PJ2 0.67 0.57 0.61
PO1 0.44 0.85 PO1-PO1 0.80 0.18 0.29
PO1-MH2 0.38 0.92 0.57
SB1 0.66 0.87 SB1-SB1 0.63 0.97 0.76
SB1-LC1 0.86 0.26 0.40
SF1 0.47 0.65 SF1-SF1 0.26 0.37 0.31
SF1-MC2 0.67 0.07 0.13
SF1-SP1 0.56 0.87 0.68
SP1 0.60 0.81 SP1-SP1 0.59 0.87 0.70
SP1-SF1 0.61 0.26 0.36

OA: overall accuracy, NIR: no information rate. SFU's abbreviations in Table 1.

values varied across all models. However, the most common variables
showing the higher variable importance were the stand proportion of
gap area (GapProp), mean (p99_mean) and standard deviation (p99_sd)
of stand height, the mean (MorR_mean) and standard deviation
(MorR_sd) of mortality rate of the stand and the number of years with
defoliation events by spruce budworm (SpBud_max). Overall, the
models depicted two to five variables with scaled importance values
greater than 50%. One single variable showed considerably higher
importance values than the other predictor variables (<25%) only in the
models for lowland conifer (LC1) and jack pine stands (PJ1). It is worth
noting that, stand age and site condition variables (MRs, NR and Site
class) ranked low overall.

In the five SFU transition models predicting a multinomial response
(MC2, MH2, MW1, SF1 and SP1), in addition to the overall variable
influence, we calculated separately the scaled variable influence for the
multiple pathways of species composition change (Fig. S2). We found
that for some models, the importance values for the most relevant var-
iables (>50%) changed among the different SFU transitions despite the
same variables being ranked in the top five positions. For instance, the
SFU transition models for mixed conifer stands (MC2) and spruce-fir
(SF1) stands are mainly influenced by gap proportion, mortality rate
and stand height. Conversely, the overall ranking for the transition
models for mixed hardwoods and mixedwoods varied widely among
some SFU transition classes. This is true for the transitions MH2-MC2
and MW1-MH2, where the most important variable in the overall

Ecological Indicators 183 (2026) 114659

ranking had a markedly lower importance. The relative importance of
the variables related to site conditions (nutrient -NR and moisture-MR
regime) remained lower than 20% for most SFU change classes.

3.3. Mapping the probability of species composition change

Mapping the probability of species composition change at the stand
level was produced by the composite of the SFU XGBoost models
(Fig. 5). Overall, the models predicted that 5% (3538 stands covering
~42,000 ha) of the selected stands are likely to change species
composition between 2005 and 2018. The proportional area predicted
to show some transition varied among SFU classes; the greater relative
proportion of stands changing class was for stands initially classified as
mixed conifers (71%) and mixed hardwoods (69%), and the lowest for
birch-poplar dominated stands (1%) (Fig. S3). Although stands showing
a higher probability of species composition change were scattered
throughout the RMF, mixed conifer and hardwood stands showing
species changes were predominantly located in the southern area of the
RMF (inset B, Fig. 5). In the central and northern areas, mostly stands
dominated by black spruce, fir and pine species were less prone to
species composition changes (inset A, Fig. 5).

3.4. Explanatory variables for SFU transitions

In order to synthesize the results, Appendix 1 (Figs. S4 to S8) displays
the partial dependence plots (PDP) for the five most important variables
in each SFU model. In addition, to facilitate the comparison of the
relationship between the SFU change classes and explanatory variables,
the SFUs were grouped into 4 sets according to the dominant species.
Thus, black spruce dominant stands (Fig. S4), jack pine dominant stands
(Fig. S5), spruce-fir-pine codominant stands (Fig. S6), conifer and
hardwood mixedwood stands (Fig. S7), and deciduous dominated stands
(Fig. S8). In general, models with only two possible transition pathways
showed clearer threshold values across variables distinguishing the
probability transitions than the multinomial response transition models.
However, even in a more complex model with multiple SFU change
pathways, variables like mortality rate and canopy height showed
marked tipping points defining the probability of SFU transitioning from
one class to another; therefore, we emphasize the role of these variables
when types of transitions are compared.

As shown in Fig. 6, partial dependence plots demonstrate the influ-
ence of spruce budworm defoliation outbreaks on the likelihood of SFU
transition pathways, revealing that the probability of transitioning from
spruce-fir (SF1) or mixedwoods (MW1) to spruce-pine (SP1) increases
notably after repeated defoliation events. The effect is particularly
pronounced beyond a threshold of 2-3 years of cumulative defoliation,
supporting the idea that repeated insect disturbances are a major driver
of compositional change in susceptible forest types. Forest tent cater-
pillar (FTC) activity was more temporally persistent (4-7 years) and
spatially concentrated in the eastern RMF than the mild and short (1-3
years) spruce budworm defoliation observed during 2000-2020 (Fig. 2).
The partial dependence curve for FTC shows a less intense and non-
linear effect in transition probability at higher defoliation intensities
for trembling aspen dominated stands (PO1).

4. Discussion

Information on how species assemblages are changing over time can
be difficult to attain on a spatially explicit basis. The recent availability
of high-quality time series of surface reflectance information derived
from satellite remote sensing is providing a previously unavailable
source of information which can be used to derive tree species infor-
mation over space and time (Hermosilla et al., 2024). The availability of
annual dominant species spatial estimates across Canada has enabled
the analysis of successional dynamics to be undertaken and demon-
strates the capacity of how these types of datasets can be used when they
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Fig. 4. Scaled variable importance in the final XGBoost models for each SFU. Refer to Table 1 for SFU class and Table 2 for all variable abbreviations.

made available. We acknowledge, however, that the satellite data record
is relatively short compared to tree species successional pathways, with
satellite data only available since the mid-1970s. As a result, we are only
able to observe relatively subtle changes in species composition over this
40-50-year time window. Obviously, mortality and succession timelines
are significantly longer (Taylor and Chen, 2011; Zhu et al., 2025) than
the relatively short period of time in our analysis, which corresponds to
the years for which morality estimates and derived ALS-structural at-
tributes are consistently available.

The relatively short period explains why stand age was ranked
among the less important variables in the succession models. This result
agrees with Zhu et al. (2025), the authors demonstrated that stand age is
a weak predictor of species compositional changes using repeated
standard forest mensuration data. As indicated throughout this analysis,
the age of the stand is derived from photographic interpretation un-
dertaken by expert interpreters within the province of Ontario. Age is a
common photo-interpreted attribute that we commonly see in forest
resource inventories. However, forest age is often extremely difficult to
estimate from either aerial or satellite imagery looking down. This has
two implications for the analysis. First, given that we did utilize these
photo-interpreted estimates of age, there are likely to be significant
amounts of error, which are generally unknown, which makes it difficult
to quantify the error associated with this analysis with respect to this
attribute. Work is underway, for example, by Maltman et al. (2023) to
estimate stand age from a combination of remote sensing data sets and
ALS. However, these estimates carry errors simply due to our inability to
derive age information solely from observations of canopy characteris-
tics. As a result of all of the attributes utilized in this analysis, age is the

one that is likely to carry the most significant error.

Succession dynamics in mid to late forest stages are the result of
abiotic and biotic factors acting independently or interactively (Anyomi
et al., 2022; Taylor and Chen, 2011). However, our analysis clearly
demonstrates that there are key suite indicators that are useful for pre-
dicting species changes over time and space. Anyomi et al. (2022)
described that boreal forests in Ontario exhibit long periods of compo-
sitional stability driven by strong successional inertia, punctuated by
disturbance-induced pulses of change. Our findings align with these
inertia-dominated successional dynamics, showing an overall low
transition rate (~5%) but with identifiable transitions associated with
mortality rates, structural attributes and insect activity. In this context,
remotely sensed indicators function as early-warning indicators of
emerging compositional shifts. Recent large-scale empirical analyses
have shown that boreal successional transitions are highly nonlinear and
driven by multiple interacting processes operating at different temporal
and spatial scales, including species dominance, stand structure, gap
dynamics, and disturbance history. For example, Zhu et al. (2025) used
boosted regression trees and structural equation modeling across >3000
permanent plots and found that successional transitions occur with low
probability (~4-5% per census interval) and are primarily driven by
within-community dynamics such as species dominance and de-
mographic structure rather than by any single external driver.

Although ALS data were available for a single acquisition year
(2018), we interpret ALS-derived canopy structure as an integrated
representation of cumulative stand development and gap legacy
resulting from background mortality, competition, and non-stand-
replacing disturbances. This framing is supported by recent work
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showing that canopy gap and structural attributes derived from ALS are
related to time-averaged mortality rates and their spatial variability in
boreal forests (Riofrio et al., 2025). In addition, Ma et al. (2023)
demonstrated that tree mortality during multi-year droughts is

10

regulated by tree height and neighborhood canopy structure, with
higher structural complexity reducing mortality via shading and lower
evaporative demand. Accordingly, ALS predictors in this study are used
to characterize the structural context within which species-composition
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transitions occurred, rather than to infer the precise timing of individual
disturbance events. We acknowledge that repeated ALS acquisitions
would improve detection of the timing and magnitude of structural
change associated with specific disturbance events, representing an
important direction for future monitoring. For instance, Trotto et al.
(2024) demonstrated that the impact of repeated non-stand-replacing
disturbances can manifest as structural changes detectable through
ALS metrics such as canopy cover and height percentiles.

One of the critical variables that is often dominant in the variable
importance is the gap area of the stand (derived from ALS data) and
estimates of stand mortality rate (i.e., relative basal area loss). Analysis
of gaps from ALS data is a well-established technique and one that is
being utilized globally to better understand disturbance characteristics
and growth patterns in forests worldwide (Jucker, 2022). Despite the
relative high precision and flexibility of ALS data to detect and delineate
canopy gaps, ALS datasets are rarely acquired at short intervals, which
limits their operational use for routine monitoring forest canopy dy-
namics (Zhang et al., 2025). There have been a number of reviews
examining different patterns of gap size distributions in forest types
globally (Goodbody et al., 2020; Rodes-Blanco et al., 2023) and the
application of these approaches to assess mortality also demonstrates
the usefulness of this information for forest management activities
(Huertas et al., 2022; Riofrio et al., 2025). One area of future work is the
continued refinement and accuracy assessment of these gap detection
techniques (Coops et al., 2021; Fischer et al., 2024). Field-based esti-
mates of gaps are challenging to acquire and would ideally be directly
measured within the forest stand. In reality, other remote sensing type
techniques, for example, hemispherical photographs, are used to vali-
date ALS estimates, but direct correlation of ALS-derived gaps with field
measured gap area is challenging (Gaulton and Malthus, 2010). Given
the importance of gaps in these mortality predictions and in helping
explain the observed species shifts, validation of gap estimates and their
application at fine spatial scales to inform management is a logical next
direction.

Although our results showed that multiple pathways exist among
SFUs, we found that stands dominated by black spruce and jack pine
tend to be more stable than more diverse forests (low in species domi-
nance), for example, mixed conifers, mixed hardwoods and mixedwoods
types. Zhu et al. (2025) obtained similar findings, suggesting that forest
dynamics like mortality, recruitment and growth are primary drivers of
successional transitions on diverse stands, while disturbances and
structural attributes highly drive transitions on forest dominated by a
single species. For instance, the two most frequent transitions—MH2 to
MC2 and SF1 to SPl—correspond well with known disturbance-
mediated successional pathways. The former likely reflects localized
FTC-related impacts on trembling aspen, while the latter is consistent
with selective loss of balsam fir in SF1 stands where this species repre-
sents less than 35% of composition and is most susceptible to spruce
budworm.

Our findings highlight the importance of disturbance regimes to
define the likely successional pathway, especially in stands dominated
by species more susceptible to spruce budworm or FTC defoliation
events. The resulting patterns of FTC influencing hardwood-to-
mixedwood transitions is consistent with well-established dis-
turbance-succession theory and empirical studies of mixedwood dy-
namics (e.g., Moulinier et al., 2013). FTC infestation duration showed a
weak but increasing effect on transition probability at higher defoliation
intensities, particularly for stands with higher hardwood content. This
pattern supports the hypothesis that FTC may contribute to PO1 to MH2
transitions in the eastern portion of the RMF. Similarly, Moulinier et al.
(2013) reported that multiple years of defoliation likely caused more
rapid canopy transition from aspen dominated to mixedwood stands.
Authors noted that the proportion of large gaps and aspen mortality
increased with FTC defoliation intensity that will likely accelerate the
transition to mixedwood stands.

On the other hand, we observed a limited but detectable influence of
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spruce budworm in spruce-fir systems, for instance, stands are likely
transitioning to a spruce-pine composition (SP1) after repeated cycles of
defoliation and infestation. Because SBW activity during the study
period was weak and RMF is dominated by black spruce (a relatively
resistant host), any SBW-related compositional effects are expected to be
modest and concentrated in minority host components. We therefore
interpret SBW covariates as potential contributors to localized, small-
magnitude shifts rather than as primary drivers of broad landscape-
scale transitions. The different susceptibility among host species to
spruce budworm triggers mortality (Bouchard and Pothier, 2010), pro-
vides stability (Sanchez-Pinillos et al., 2019) or reduces growth at
different rates (Morin-Bernard et al., 2024), where typically, black
spruce-dominated forests are usually less defoliated than balsam fir or
white spruce forests (Hennigar et al., 2008). Moreover, initial canopy
cover and stand height are key attributes that modulate the spruce
budworm infestation severity, where more open stands are less sus-
ceptible to infestations (Trotto et al., 2024).

While the spatial variability of canopy cover, height and forest
structural attributes can be accurately captured by ALS data, the current
characterization of spruce budworm damage and delineation of infested
area by periodic interpretation of aerial surveys may potentially provide
limited temporal and spatial information on disturbance distribution,
especially for light and intermediate attacks at a fine scale (Coops et al.,
2020). The combination of aerial or satellite imagery with structural
metrics derived from point clouds has shown promising results to pro-
vide fine spatial, spectral, and temporal scale analyses of forest insect
disturbances (Rahimzadeh-Bajgiran et al., 2018; Senf et al., 2017;
Trumbore et al., 2015). For instance, digital photogrammetric point
clouds, derived using visible and near-infrared aerial imagery, might
facilitate estimation of cumulative spruce budworm defoliation
(Goodbody et al., 2018). Additionally, the availability of concurrent ALS
acquisitions allows characterize the changes in structural attributes
associated with different severity levels of spruce budworm attacks
(Trotto et al., 2024).

Producing detailed spatial and multitemporal information of tree
species requires non-trivial methodological considerations to ensure the
consistency of the mapped species and that the observed changes in
species composition represent the likely successional transitions. For
instance, applying algorithms that consider the spatial and temporal
differences of the spectral signature for a given species from multiple
ecological zones, species assemblages, and environmental conditions
(Fassnacht et al., 2016; Hermosilla et al., 2024; Gili¢ et al., 2023).
However, national accuracy statistics of species classification cannot be
directly assumed at local-scale (i.e., RMF), because the occurrence
probability of non-dominant species may not necessarily reflect their
prevalence in a given pixel. Thus a careful consideration of thresholds
are required to determine their meaningful presence (Hermosilla et al.,
2022). Beside defining thresholds for class membership at pixel level
and the relative presence per stand for a given species, a local validation
of species classification is advised to assess the discrepancies between
model predictions and reference species composition. In our local vali-
dation, Landsat-derived SFU classification achieve local accuracies
>60% for most SFU classes in comparison to FRI photo-interpreted SFU
(Fig. S1). It is worth to note that SFU misclassification were systematic,
not random, and primarily restricted to SFU classes with similar species
compositions, such as, spruce-fir vs. spruce-pine (SF1-SP1), birch-
poplar vs. mixed hardwood (BW1-MH2) and mixed conifers (MC2).
The accuracy levels in our validation assessment are comparable to
recent studies combining multispectral imagery and ALS data to esti-
mate species proportions at stand level. For example, Cao et al. (2025)
and Murray et al. (2025) achieved species prediction errors on the order
of 10-20% depending on the taxon and stand composition. Although
these approaches estimate continuous species proportions rather than
discrete SFU classes, their reported uncertainty ranges align with the
accuracy levels we observe locally and reinforce that our detected
transitions are unlikely to result from random misclassification.
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Moreover, considering established successional transition rules (Lennon
et al., 2016) and the temporal consistency assessment of SFU transitions
might help to refine the time series and reduce the uncertainty related to
the species mapping (Gomez et al., 2016), especially for developing local
applications that facilitate informed decisions regarding forest man-
agement and conservation planning.

The implementation of a continuous forest inventory framework
(Coops et al., 2023; Mulverhill et al., 2024) to deliver updated forest
inventory attributes cost-effectively also requires updated information
on forest composition. Together, the Landsat-based species composition
trajectories and structural attributes and mortality estimates derived
from ALS data represent a set of ecological indicators that capture both
compositional and structural dimensions of forest condition. These in-
dicators respond to disturbance gradients, revealing the magnitude and
direction of successional shifts, and can be consistently mapped across
management units. Moreover, flagging stands that are likely to show
changes in species composition would facilitate an effective method for
designing a field measurement program to validate the forest inventory
outcomes. Lastly, managers can leverage from accurate, spatially
explicit, and detailed information to design and implement adaptative
silviculture regimes at for operational management scale (Achim et al.,
2022), especially with more frequent and drastic disturbances to be
expected.

5. Conclusion

This study illustrates the value of integrating satellite-derived species
composition time series, ALS-based structural attributes and disturbance
history to detect and predict species composition transitions in boreal
mixedwood forests. This integration enabled us to identify and model 27
compositional transitions within mid to late successional stages. While
only a small fraction of the landscape experienced species composition
changes within the 13-year study window, these changes were strongly
associated with mortality rates and canopy gaps. Additionally, stands
with repeated defoliation from spruce budworm outbreaks exhibited
higher probabilities of transition, particularly to spruce-pine assem-
blages. These results underscore the importance of structural and
disturbance-based indicators in understanding and forecasting species
shifts during mid to late successional stages. The relatively low overall
area undergoing transition reflects both the slow pace of forest succes-
sion and the short temporal window considered. By identifying stands
prone to compositional change, our findings support the development of
continuous forest inventory systems and inform adaptive silvicultural
planning to enhance resilience under increasing disturbance pressures.
Moreover, combining Landsat-derived species-assemblage trajectories
with ALS-derived structural and mortality metrics, our analysis provides
a suite of spatially explicit indicators relevant for assessing forest
integrity and monitoring successional dynamics across managed boreal
landscapes.
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